Skip to content

Effects of Coarse Aggregates on 3D Printability and Mechanical Properties of Ultra-High-Performance Fiber-Reinforced Concrete (2024-08)

10.1016/j.jobe.2024.110516

 Fernand Muhirwa, Li Yaqi, Qian Qiwei, Chi Yin, Yang Zhenjun
Journal Article - Journal of Building Engineering, No. 110516

Abstract

3D printing of ultra high performance fiber reinforced concrete (UHPFRC) suffers from high shrinkage and poor interlayer properties. To mitigate these problems, this study develops new mixtures of UHPFRC materials containing coarse aggregates (CA), and critically examines their suitability for 3D printing (3DP). Totally 90 mould-cast and 3DP cylinder and beam specimens with different CA sizes (5-15mm) and CA-binder ratios (0.3-0.5) were tested under compression and bending in three directions. The internal distribution and volume fractions of steel fibers and pores and the crack trajectories were characterized and analysed by micro X-ray CT scanned 3D images with 37μm voxel resolution. The results show that adding more and bigger CAs into UHPFRC reduced the flowability but enhanced the buildability with desired extrudability achieved by adjusting 3D printing velocity. Although the compressive strength of the 3DP cylinders was 15-42% lower than that of the mould-cast ones due to higher porosities, over 100MPa strength was still achieved for all the 3DP cylinders with less than 10% anisotropy. The CT images did not show evident interlayers and interlayer delamination under compression, indicating the new 3DP mixtures and printing parameters may have highly promoted cement hydration. The flexural strength of 3DP beams was 3-34% higher than that of the cast ones, because most fibres were oriented in the printing or beam axis direction as represented by overall orientation indices calculated from CT images, thereby providing significant crack-bridging effects. The developed new mixtures are therefore well suited for 3D printing, particularly for fabrication of structural members with preferred fibre orientation, such as beams, slabs and shells.

23 References

  1. Al-Qutaifi Sarah, Nazari Ali, Bagheri Ali (2018-07)
    Mechanical Properties of Layered Geopolymer Structures Applicable in Concrete 3D Printing
  2. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2020-10)
    Development of 3D Printable Ultra-High-Performance Fiber-Reinforced Concrete for Digital Construction
  3. Chen Yu, He Shan, Gan Yidong, Çopuroğlu Oğuzhan et al. (2021-11)
    A Review of Printing-Strategies, Sustainable Cementitious Materials and Characterization Methods in the Context of Extrusion-Based 3D Concrete Printing
  4. Chu Shaohua, Li Leo, Kwan Albert (2020-09)
    Development of Extrudable High-Strength Fiber-Reinforced Concrete Incorporating Nano-Calcium-Carbonate
  5. Delgado Camacho Daniel, Clayton Patricia, Brien William, Seepersad Carolyn et al. (2018-02)
    Applications of Additive Manufacturing in the Construction Industry:
    A Forward-Looking Review
  6. Gebhard Lukas, Mata-Falcón Jaime, Anton Ana-Maria, Dillenburger Benjamin et al. (2021-04)
    Structural Behavior of 3D Printed Concrete Beams with Various Reinforcement-Strategies
  7. Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
    Large-Scale 3D Printing of Ultra-High-Performance Concrete:
    A New Processing Route for Architects and Builders
  8. Hambach Manuel, Rutzen Matthias, Volkmer Dirk (2019-02)
    Properties of 3D-Printed Fiber-Reinforced Portland Cement-Paste
  9. Hamidi Fatemeh, Aslani Farhad (2019-05)
    Additive Manufacturing of Cementitious Composites:
    Materials, Methods, Potentials, and Challenge
  10. Ji Guangchao, Xiao Jianzhuang, Zhi Peng, Wu Yuching et al. (2022-02)
    Effects of Extrusion-Parameters on Properties of 3D Printing Concrete with Coarse Aggregates
  11. Kazemian Ali, Khoshnevis Behrokh (2021-08)
    Real-Time Extrusion-Quality-Monitoring-Techniques for Construction 3D Printing
  12. Liu Huawei, Liu Chao, Wu Yiwen, Bai Guoliang et al. (2022-09)
    3D Printing Concrete with Recycled Coarse Aggregates:
    The Influence of Pore-Structure on Inter-Layer Adhesion
  13. Liu Huawei, Liu Chao, Wu Yiwen, Bai Guoliang et al. (2022-06)
    Hardened Properties of 3D Printed Concrete with Recycled Coarse Aggregate
  14. Long Wujian, Lin Can, Tao Jie-Lin, Ye Taohua et al. (2021-02)
    Printability and Particle-Packing of 3D Printable Limestone-Calcined-Clay-Cement Composites
  15. Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2018-11)
    Improving the 3D Printability of High-Volume Fly-Ash Mixtures via the Use of Nano-Attapulgite-Clay
  16. Rahul Attupurathu, Mohan Manu, Schutter Geert, Tittelboom Kim (2021-10)
    3D Printable Concrete with Natural and Recycled Coarse Aggregates:
    Rheological, Mechanical and Shrinkage Behavior
  17. Rahul Attupurathu, Santhanam Manu (2020-02)
    Evaluating the Printability of Concretes Containing Lightweight Coarse Aggregates
  18. Wang Xianggang, Jia Lutao, Jia Zijian, Zhang Chao et al. (2022-06)
    Optimization of 3D Printing Concrete with Coarse Aggregate via Proper Mix-Design and Printing-Process
  19. Weng Yiwei, Ruan Shaoqin, Li Mingyang, Mo Liwu et al. (2019-06)
    Feasibility Study on Sustainable-Magnesium-Potassium-Phosphate Cement-Paste for 3D Printing
  20. Yang Yekai, Wu Chengqing, Liu Zhongxian, Wang Hailiang et al. (2021-10)
    Mechanical Anisotropy of Ultra-High-Performance Fiber-Reinforced Concrete for 3D Printing
  21. Yu Shiwei, Du Hongjian, Sanjayan Jay (2020-07)
    Aggregate-Bed 3D Concrete Printing with Cement-Paste Binder
  22. Zhang Chao, Jia Zijian, Wang Xianggang, Jia Lutao et al. (2022-05)
    A Two-Phase Design-Strategy Based on the Composite of Mortar and Coarse Aggregate for 3D Printable Concrete with Coarse Aggregate
  23. Zhu Binrong, Pan Jinlong, Zhou Zhenxin, Cai Jingming (2021-04)
    Mechanical Properties of Engineered Cementitious Composites Beams Fabricated by Extrusion-Based 3D

5 Citations

  1. Barbhuiya Salim, Das Bibhuti, Adak Dibyendu (2025-09)
    Key Variables Influencing the Performance of 3D Printed Concrete:
    A Comprehensive Analysis
  2. Yang Guojun, Weng Yiwei, Tian Jiefu, Yang Zhenjun (2025-05)
    3D Printing Towards Cost-Effective Design of Composite UHPFRC Beams:
    Effects of Fiber Distribution and Orientation on Flexural Performances and Failure Mode Transition
  3. Qiao Zhigang, Li Hui, Wang Fei, Qi Yongle et al. (2025-04)
    Optimizing Thermal Energy Storage in 3D Printed Concrete with Hollow Ceramsite Composite Phase Change Materials
  4. Ravichandran Darssni, Prem Prabhat, Giridhar Greeshma, Bhaskara Gollapalli et al. (2025-04)
    Time-Dependent Properties of 3D-Printed UHPC with Silica Sand, Copper Slag, and Fibers
  5. Fernand Muhirwa, Yang Zhenjun (2025-01)
    Structural and Microstructural Behavior of Novel 3DP-UHPFRC Beam with Discrete Steel-Fibers and Steel-FRP Composite Bar

BibTeX
@article{fern_li_qian_chi.2024.EoCAo3PaMPoUHPFRC,
  author            = "Muhirwa Fernand and Yaqi Li and Qiwei Qian and Yin Chi and Zhenjun Yang",
  title             = "Effects of Coarse Aggregates on 3D Printability and Mechanical Properties of Ultra-High-Performance Fiber-Reinforced Concrete",
  doi               = "10.1016/j.jobe.2024.110516",
  year              = "2024",
  journal           = "Journal of Building Engineering",
  pages             = "110516",
}
Formatted Citation

M. Fernand, Y. Li, Q. Qian, Y. Chi and Z. Yang, “Effects of Coarse Aggregates on 3D Printability and Mechanical Properties of Ultra-High-Performance Fiber-Reinforced Concrete”, Journal of Building Engineering, p. 110516, 2024, doi: 10.1016/j.jobe.2024.110516.

Fernand, Muhirwa, Yaqi Li, Qiwei Qian, Yin Chi, and Zhenjun Yang. “Effects of Coarse Aggregates on 3D Printability and Mechanical Properties of Ultra-High-Performance Fiber-Reinforced Concrete”. Journal of Building Engineering, 2024, 110516. https://doi.org/10.1016/j.jobe.2024.110516.