Skip to content

Improving Structural Build-Up of Limestone-Calcined-Clay-Cement-Pastes by Using Inorganic Additives (2023-06)

10.1016/j.conbuildmat.2023.131959

 Chen Yu,  Zhang Yu,  He Shan, Liang Xuhui,  Schlangen Erik,  Çopuroğlu Oğuzhan
Journal Article - Construction and Building Materials, Vol. 392

Abstract

In 3D concrete printing, fast structuration is a prerequisite for ideal buildability. This paper aims to study the impact of inorganic additives, i.e., CaCl2 and gypsum, on structural build-up and very early-age hydration of limestone-calcined clay-cement (LC3) pastes within the first 70–80 min. Results show that, increasing the dosage of CaCl2 or gypsum can accelerate storage modulus G’ and static yield stress evolution with time, as well as increase chemically bound water (H) content and total specific surface area (SSAtotal). Furthermore, good correlations were found between G’ and H content, as well as static yield stress and the ratio of free water content to SSAtotal. The acceleration by CaCl2 can be attributed to stimulating C3S and C3A hydration and promoting crystal formation, i.e., ettringite, portlandite, and Friedel’s salt. Additionally, the increase in gypsum percentage led to a large amount of unreacted gypsum in the system, resulting in an increase in SSAtotal.

29 References

  1. Bhattacherjee Shantanu, Basavaraj Anusha, Rahul Attupurathu, Santhanam Manu et al. (2021-06)
    Sustainable Materials for 3D Concrete Printing
  2. Chen Yu, Figueiredo Stefan, Li Zhenming, Chang Ze et al. (2020-03)
    Improving Printability of Limestone-Calcined-Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture
  3. Chen Yu, He Shan, Gan Yidong, Çopuroğlu Oğuzhan et al. (2021-11)
    A Review of Printing-Strategies, Sustainable Cementitious Materials and Characterization Methods in the Context of Extrusion-Based 3D Concrete Printing
  4. Chen Yu, He Shan, Zhang Yu, Wan Zhi et al. (2021-08)
    3D Printing of Calcined-Clay-Limestone-Based Cementitious Materials
  5. Chen Yuning, Liu Chao, Cao Ruilin, Chen Chun et al. (2022-02)
    Systematical Investigation of Rheological Performance Regarding 3D Printing Process for Alkali-Activated Materials:
    Effect of Precursor Nature
  6. Chen Mingxu, Liu Bo, Li Laibo, Cao Lidong et al. (2020-01)
    Rheological Parameters, Thixotropy and Creep of 3D Printed Calcium-Sulfoaluminate-Cement Composites Modified by Bentonite
  7. Chen Yu, Rodríguez Claudia, Li Zhenming, Chen Boyu et al. (2020-07)
    Effect of Different Grade Levels of Calcined Clays on Fresh and Hardened Properties of Ternary-Blended Cementitious Materials for 3D Printing
  8. Chen Yu, Veer Frederic, Çopuroğlu Oğuzhan, Schlangen Erik (2018-09)
    Feasibility of Using Low CO2 Concrete Alternatives in Extrusion-Based 3D Concrete Printing
  9. Esnault Vivien, Labyad A., Chantin Marjorie, Toussaint Fabrice (2018-09)
    Experience in On-Line Modification of Rheology and Strength Acquisition of 3D Printable Mortars
  10. Gosselin Clément, Duballet Romain, Roux Philippe, Gaudillière-Jami Nadja et al. (2016-03)
    Large-Scale 3D Printing of Ultra-High-Performance Concrete:
    A New Processing Route for Architects and Builders
  11. Ivanova Irina, Mechtcherine Viktor (2020-01)
    Possibilities and Challenges of Constant Shear-Rate-Test for Evaluation of Structural Build-Up-Rate of Cementitious Materials
  12. Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
    An Ab-Inito Approach for Thixotropy Characterisation of Nano-Particle-Infused 3D Printable Concrete
  13. Marchment Taylor, Sanjayan Jay (2021-04)
    Reinforcement Method for 3D Concrete Printing Using Paste-Coated Bar Penetrations
  14. Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
    Extrusion-Based Additive Manufacturing with Cement-Based Materials:
    Production Steps, Processes, and Their Underlying Physics
  15. Moeini Mohammad, Hosseinpoor Masoud, Yahia Ammar (2020-05)
    Effectiveness of the Rheometric Methods to Evaluate the Build-Up of Cementitious Mortars Used for 3D Printing
  16. Nerella Venkatesh, Beigh Mirza, Fataei Shirin, Mechtcherine Viktor (2018-11)
    Strain-Based Approach for Measuring Structural Build-Up of Cement-Pastes in the Context of Digital Construction
  17. Perrot Arnaud, Jacquet Yohan, Rangeard Damien, Courteille Eric et al. (2020-03)
    Nailing of Layers:
    A Promising Way to Reinforce Concrete 3D Printing Structures
  18. Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
    Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques
  19. Qian Ye, Kawashima Shiho (2016-09)
    Use of Creep Recovery Protocol to Measure Static Yield-Stress and Structural Rebuilding of Fresh Cement-Pastes
  20. Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
    3D Printable Concrete:
    Mixture-Design and Test-Methods
  21. Rahul Attupurathu, Sharma Abhishek, Santhanam Manu (2020-01)
    A Desorptivity-Based Approach for the Assessment of Phase Separation During Extrusion of Cementitious Materials
  22. Reiter Lex, Wangler Timothy, Anton Ana-Maria, Flatt Robert (2020-05)
    Setting-on-Demand for Digital Concrete:
    Principles, Measurements, Chemistry, Validation
  23. Reiter Lex, Wangler Timothy, Roussel Nicolas, Flatt Robert (2018-06)
    The Role of Early-Age Structural Build-Up in Digital Fabrication with Concrete
  24. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  25. Roussel Nicolas, Bessaies-Bey Hela, Kawashima Shiho, Marchon Delphine et al. (2019-08)
    Recent Advances on Yield-Stress and Elasticity of Fresh Cement-Based Materials
  26. Souza Marcelo, Ferreira Igor, Moraes Elisângela, Senff Luciano et al. (2021-11)
    Role of Chemical Admixtures on 3D Printed Portland Cement:
    Assessing Rheology and Buildability
  27. Tao Yaxin, Rahul Attupurathu, Lesage Karel, Yuan Yong et al. (2021-02)
    Stiffening Control of Cement-Based Materials Using Accelerators in In-Line Mixing Processes:
    Possibilities and Challenges
  28. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing
  29. Yuan Qiang, Zhou Dajun, Huang Hai, Peng Jianwei et al. (2020-06)
    Structural Build-Up, Hydration and Strength Development of Cement-Based Materials with Accelerators

9 Citations

  1. Iqbal Imtiaz, Kasim Tala, Besklubova Svetlana, Inqiad Waleed et al. (2025-12)
    Exploring Knowledge Domains and Future Research Directions in 3D Printed Concrete:
    A Bibliometric and Systematic Review
  2. Tao Jie-Lin, Hu Shengming, Duan Zhenhua, Jiao Dengwu (2025-11)
    Magneto-Responsive Flow Behavior and Early-Age Microstructural Evolution of 3D Printing Lightweight Concrete with Fly Ash Cenospheres
  3. Jin Yuan, Jiang Chengzhi, Gan Xingyu, Sun Zhaoyang et al. (2025-07)
    Enhancing the Printability of 3D Printed White Cementitious Materials with Accelerators:
    Evolution of Early-Age Hydration and Rheology
  4. Zuo Zibo, Tao Yaxin, Huang Yulin, Zhang Longlong et al. (2025-04)
    Real-Time Temperature Monitoring to Evaluate the Strength Evolution of 3D Printed Concrete:
    From Lab to In-Situ Printing
  5. Beigh Mirza, Signorini Cesare, Rauf Asim, Schröfl Christof et al. (2025-04)
    Intrinsic Rheological Behavior of Limestone Calcined Clay Cementitious (LC3) Binders for Automated Construction:
    Effect of Calcium Sulfate Varieties
  6. Zat Tuani, Schuster Sílvio, Schmitt Duarte Ester, Freitas Daudt Natália et al. (2025-03)
    Rheological Properties of High-Performance Concrete Reinforced with Microfibers and Their Effects on 3D Printing Process
  7. Cui Weijiu, Liu Wenliang, Guo Ruyi, Da Wan et al. (2025-02)
    Geometrical Quality Inspection in 3D Concrete Printing Using AI-Assisted Computer Vision
  8. Zhao Herui, Jiang Quan, Xia Yong, Liu Jian et al. (2024-11)
    Microbial-Induced Carbonate Reinforcement for 3D Printed Concrete:
    Testing in Printable and Mechanical Strength
  9. Tao Yaxin, Mohan Manu, Rahul Attupurathu, Schutter Geert et al. (2023-10)
    Influence of Rheology on Mixing Homogeneity and Mechanical Behavior of Twin-Pipe 3D Printable Concrete

BibTeX
@article{chen_zhan_he_lian.2023.ISBUoLCCCPbUIA,
  author            = "Yu Chen and Yu Zhang and Shan He and Xuhui Liang and Erik Schlangen and Oğuzhan Çopuroğlu",
  title             = "Improving Structural Build-Up of Limestone-Calcined-Clay-Cement-Pastes by Using Inorganic Additives",
  doi               = "10.1016/j.conbuildmat.2023.131959",
  year              = "2023",
  journal           = "Construction and Building Materials",
  volume            = "392",
}
Formatted Citation

Y. Chen, Y. Zhang, S. He, X. Liang, E. Schlangen and O. Çopuroğlu, “Improving Structural Build-Up of Limestone-Calcined-Clay-Cement-Pastes by Using Inorganic Additives”, Construction and Building Materials, vol. 392, 2023, doi: 10.1016/j.conbuildmat.2023.131959.

Chen, Yu, Yu Zhang, Shan He, Xuhui Liang, Erik Schlangen, and Oğuzhan Çopuroğlu. “Improving Structural Build-Up of Limestone-Calcined-Clay-Cement-Pastes by Using Inorganic Additives”. Construction and Building Materials 392 (2023). https://doi.org/10.1016/j.conbuildmat.2023.131959.