Skip to content

Developing 3D Printable and Buildable Limestone-Calcined-Clay-Based Cement Composites with Higher Aggregate Content (2023-03)

10.1016/j.conbuildmat.2023.131058

 Bhattacherjee Shantanu,  Jain Smrati,  Santhanam Manu
Journal Article - Construction and Building Materials, Vol. 376

Abstract

The study investigates the effect of increasing aggregate volume on the buildability of printable mixes having ordinary Portland cement and limestone calcined clay, and aggregate-to-binder ratio of 1.5 to 3 (by weight). The experimental program is planned considering the evaluation of extrudability requirements, open time, and buildability requirements (layer compression) while printing. The effect of water-to-binder and aggregate-tobinder ratio on flowability is analysed and the dosage of superplasticizer required to attain 200 mm and 180 mm spread is determined. Further, squeeze flow and step load tests are performed to analyse the compressive resistance of the mix at different time intervals in the fresh state, while compressive strength and drying shrinkage are considered to compare the mixes in the hardened state. The factors of energy consumption and carbon emission are considered to compare the sustainability of the mixes. It is concluded that the binderaggregate matrix governs the compression of the material in the fresh state, with the paste governing the properties in the first few minutes and then the aggregate skeleton. The compression in the fresh state is observed not to be dependent on the mix’s flowability, leading to the possibility of designing a flowable as well as buildable mix with a larger aggregate volume. Further, with an increase in the aggregate ratio from 1.5 to 3, the energy consumption of the mix reduces from 3571 to 2426 MJ and carbon dioxide emission from 462 to 314 kg CO2 for each m3 of concrete. Hence, it is concluded that a sustainable 3D printable mix with a higher aggregateto-binder ratio can be designed while satisfying the functional needs of the concrete.

16 References

  1. Beigh Mirza, Nerella Venkatesh, Schröfl Christof, Mechtcherine Viktor (2015-06)
    Studying the Rheological Behavior of Limestone-Calcined-Clay-Cement (LC3) Mixtures in the Context of Extrusion-Based 3D Printing
  2. Bhattacherjee Shantanu, Basavaraj Anusha, Rahul Attupurathu, Santhanam Manu et al. (2021-06)
    Sustainable Materials for 3D Concrete Printing
  3. Bhattacherjee Shantanu, Jain Smrati, Santhanam Manu (2022-11)
    Criticality of Binder-Aggregate Interaction for Buildability of 3D Printed Concrete Containing Limestone-Calcined-Clay
  4. Bhattacherjee Shantanu, Jain Smrati, Santhanam Manu (2022-06)
    Criticality of Microstructural Evolution at an Early-Age on the Buildability of an Accelerated 3D Printable Concrete
  5. Bhattacherjee Shantanu, Santhanam Manu (2022-04)
    Investigation on the Effect of Alkali-Free Aluminium Sulfate-Based Accelerator on the Fresh Properties of 3D Printable Concrete
  6. Chen Yu, He Shan, Zhang Yu, Wan Zhi et al. (2021-08)
    3D Printing of Calcined-Clay-Limestone-Based Cementitious Materials
  7. Chen Yu, Li Zhenming, Figueiredo Stefan, Çopuroğlu Oğuzhan et al. (2019-04)
    Limestone and Calcined-Clay-Based Sustainable Cementitious Materials for 3D Concrete Printing:
    A Fundamental Study of Extrudability and Early-Age Strength Development
  8. Chen Yu, Rodríguez Claudia, Li Zhenming, Chen Boyu et al. (2020-07)
    Effect of Different Grade Levels of Calcined Clays on Fresh and Hardened Properties of Ternary-Blended Cementitious Materials for 3D Printing
  9. Ding Tao, Xiao Jianzhuang, Qin Fei, Duan Zhenhua (2020-03)
    Mechanical Behavior of 3D Printed Mortar with Recycled Sand at Early-Ages
  10. Ivanova Irina, Mechtcherine Viktor (2020-03)
    Effects of Volume Fraction and Surface Area of Aggregates on the Static Yield-Stress and Structural Build-Up of Fresh Concrete
  11. Ji Guangchao, Xiao Jianzhuang, Zhi Peng, Wu Yuching et al. (2022-02)
    Effects of Extrusion-Parameters on Properties of 3D Printing Concrete with Coarse Aggregates
  12. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  13. Long Wujian, Lin Can, Tao Jie-Lin, Ye Taohua et al. (2021-02)
    Printability and Particle-Packing of 3D Printable Limestone-Calcined-Clay-Cement Composites
  14. Mohan Manu, Rahul Attupurathu, Tittelboom Kim, Schutter Geert (2020-10)
    Rheological and Pumping Behavior of 3D Printable Cementitious Materials with Varying Aggregate Content
  15. Peng Yiming, Unluer Cise (2022-12)
    Development of Alternative Cementitious Binders for 3D Printing Applications:
    A Critical Review of Progress, Advantages and Challenges
  16. Qaidi Shaker, Yahia Ammar, Tayeh B., Unis H. et al. (2022-10)
    3D Printed Geopolymer Composites:
    A Review

21 Citations

  1. Rabul H., Prem Prabhat, Ravichandran Darssni, Rathan RT Arjun (2025-09)
    Development of Fly Ash and Limestone Calcined Clay-Based Mixtures for Concrete 3D Printing
  2. Barbhuiya Salim, Das Bibhuti, Adak Dibyendu (2025-09)
    Key Variables Influencing the Performance of 3D Printed Concrete:
    A Comprehensive Analysis
  3. Kaur Zinnia, Goyal Shweta, Kwatra Naveen, Bera Tarun (2025-07)
    Pore Structure Analysis and Durability Performance of Sustainable 3D Printed Concrete Incorporating Fly Ash and Limestone Calcined Clay Based Binders
  4. Els Heinrich, Zijl Gideon, Villiers Wibke (2025-06)
    A Review of Shrinkage and Restrained Shrinkage Cracking in 3D Concrete Printing
  5. Kurniati Eka, Kim Heejeong (2025-04)
    Enhancing the Printability of 3D Printing Limestone Calcined Clay Cement Using Hydroxyethyl Cellulose Admixture and Silica Fume
  6. Sun Junbo, Wang Yufei, Yang Xin, Wang Haihong et al. (2025-01)
    Red Mud Utilization in Fiber-Reinforced 3D Printed Concrete:
    Mechanical Properties and Environmental Impact Analysis
  7. Gurunandan M., Mala Hiranya, Nanthagopalan Prakash (2024-12)
    Effect of Water-to-Binder, Aggregate-to-Binder-Ratio and Admixtures on Printability and Mechanical Properties of 3D Printable Mortar Mixtures
  8. Zhang Yu, Yu Zhengxing, Zhang Yunsheng, Zhang Jiufu et al. (2024-12)
    Study on the Predictive Model for Continuous Build-Height of 3D Printed Concrete Based on Printability and Early Mechanical Properties
  9. Jin Willy, Caron Jean-François, Ouellet-Plamondon Claudiane (2024-11)
    Minimizing the Carbon Footprint of 3D Printing Concrete:
    Leveraging Parametric LCA and Neural Networks Through Multi-Objective-Optimization
  10. Vaishali Panneer, Varunkumar P. (2024-11)
    Experimental Study on Behavior of Cement Concrete in 3d Printing
  11. Jin Willy, Roux Charlotte, Ouellet-Plamondon Claudiane, Caron Jean-François (2024-09)
    Life Cycle Assessment of Limestone-Calcined-Clay-Concrete:
    Potential for Low-Carbon 3D Printing
  12. Baytak Tugba, Gdeh Tawfeeq, Jiang Zhangfan, Arce Gabriel et al. (2024-09)
    Rheological, Mechanical, and Environmental Performance of Printable Graphene-Enhanced Cementitious Composites with Limestone and Calcined Clay
  13. Mani Aravindhraj, Sekar Muthu (2024-08)
    Non-Destructive Testing Techniques for Investigating Mechanical Property and Porosity-Disparities in Extrusion 3D Printed Concrete
  14. Bhattacherjee Shantanu, Jain Smrati, Santhanam Manu (2024-07)
    Investigating the Interaction of Limestone-Calcined-Clay and OPC-Based Systems with a Methylhydroxyethyl-Cellulose-Based Viscosity-Modifier Used for 3D Printable Concrete
  15. Sahana C., Soda Prabhath, Dwivedi Ashutosh, Kumar Sandeep et al. (2024-07)
    3D Printing with Stabilized Earth:
    Material-Development and Effect of Carbon-Sequestration on Engineering-Performance
  16. Jaji Mustapha, Zijl Gideon, Babafemi Adewumi (2024-03)
    Durability and Pore-Structure of Metakaolin-Based 3D Printed Geopolymer Concrete
  17. Soda Prabhath, Dwivedi Ashutosh, Sahana C., Gupta Souradeep (2024-03)
    Development of 3D Printable Stabilized Earth-Based Construction Materials Using Excavated Soil:
    Evaluation of Fresh and Hardened Properties
  18. Colyn Markus, Zijl Gideon, Babafemi Adewumi (2024-02)
    Fresh and Strength Properties of 3D Printable Concrete Mixtures Utilising a High Volume of Sustainable Alternative Binders
  19. Tay Yi, Lim Sean, Phua Seng, Tan Ming et al. (2023-10)
    Exploring Carbon-Sequestration-Potential Through 3D Concrete Printing
  20. Overmeir Anne, Šavija Branko, Bos Freek, Schlangen Erik (2023-08)
    3D Printable Strain-Hardening Cementitious Composites (3DP-SHCC):
    Tailoring Fresh and Hardened State Properties
  21. Liu Chao, Zhang Yamei, Banthia Nemkumar (2023-05)
    Unveiling Pore Formation and Its Influence on Micromechanical Property and Stress-Distribution of 3D Printed Foam-Concrete Modified with Hydroxypropyl-Methylcellulose and Silica-Fume

BibTeX
@article{bhat_jain_sant.2023.D3PaBLCCBCCwHAC,
  author            = "Shantanu Bhattacherjee and Smrati Jain and Manu Santhanam",
  title             = "Developing 3D Printable and Buildable Limestone-Calcined-Clay-Based Cement Composites with Higher Aggregate Content",
  doi               = "10.1016/j.conbuildmat.2023.131058",
  year              = "2023",
  journal           = "Construction and Building Materials",
  volume            = "376",
}
Formatted Citation

S. Bhattacherjee, S. Jain and M. Santhanam, “Developing 3D Printable and Buildable Limestone-Calcined-Clay-Based Cement Composites with Higher Aggregate Content”, Construction and Building Materials, vol. 376, 2023, doi: 10.1016/j.conbuildmat.2023.131058.

Bhattacherjee, Shantanu, Smrati Jain, and Manu Santhanam. “Developing 3D Printable and Buildable Limestone-Calcined-Clay-Based Cement Composites with Higher Aggregate Content”. Construction and Building Materials 376 (2023). https://doi.org/10.1016/j.conbuildmat.2023.131058.