Influence of Print-Speed and Nozzle-Diameter on the Fiber-Alignment in 3D Printed Ultra-High-Performance Concrete (2024-03)¶
, Abbas Nadeem, Akbar Muhammad, Sabi Ehab, Thomas Blessen, Arshid Muhammad
Journal Article - Frontiers in Materials, Vol. 11
Abstract
The limitations in the available reinforcing methods have accompanied the increasing popularity of 3D Concrete Printing (3DCP). Incorporating steel fibers as reinforcement is a promising approach to overcome these limitations. However, the impact of the printing process on the alignment of these fibers is not well understood. Therefore, the objective of this research is to quantitatively analyze the distribution of steel fiber alignment in 3D printed concrete. To achieve this, digital image analysis was employed to assess the influence of nozzle diameter, print speed, and fiber content on fiber alignment in both moldcast and 3D-printed samples. UHPC matrix without fiber addition and fiber reinforced UHPC composites with brass-coated steel fiber contents of 1.5% and 3% by volume fraction were printed. Furthermore, Material nozzles ranging from 10 mm to 40 mm in size were employed and printing speeds of 15, 25, 35, and 45 mm/s were adjusted. Subsequently, the study examined the implications of fiber alignment on the hardened performance of printed specimens and compared them with conventionally mold-cast samples. The findings of the study demonstrated that increasing the fiber content and using smaller diameter nozzles during the printing procedure led to significant improvements in fiber orientation along the printing direction. As a result, the mechanical performance of the printed samples showed a substantial enhancement compared to the specimens produced through mold casting, primarily due to the improved fiber alignment.
¶
23 References
- Asprone Domenico, Menna Costantino, Bos Freek, Salet Theo et al. (2018-06)
Rethinking Reinforcement for Digital Fabrication with Concrete - Bos Freek, Bosco Emanuela, Salet Theo (2018-11)
Ductility of 3D Printed Concrete Reinforced with Short Straight Steel-Fibers - Buswell Richard, Soar Rupert, Gibb Alistar, Thorpe Tony (2006-06)
Freeform Construction:
Mega-Scale Rapid Manufacturing for Construction - Figueiredo Stefan, Rodríguez Claudia, Ahmed Zeeshan, Bos Derk et al. (2020-05)
Mechanical Behavior of Printed Strain-Hardening Cementitious Composites - Hamidi Fatemeh, Aslani Farhad (2019-05)
Additive Manufacturing of Cementitious Composites:
Materials, Methods, Potentials, and Challenge - Khoshnevis Behrokh (2003-11)
Automated Construction by Contour Crafting:
Related Robotics and Information Technologies - Kruger Jacques, Cho Seung, Zeranka Stephan, Vintila Cristian et al. (2019-12)
3D Concrete Printer Parameter Optimization for High-Rate Digital Construction Avoiding Plastic Collapse - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Mix-Design and Fresh Properties for High-Performance Printing Concrete - Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
Developments in Construction-Scale Additive Manufacturing Processes - Liu Xuanting, Sun Bohua (2021-11)
The Influence of Interface on the Structural Stability in 3D Concrete Printing Processes - Ma Guowei, Li Zhijian, Wang Li (2017-12)
Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing - Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing - Nerella Venkatesh, Mechtcherine Viktor (2019-02)
Studying the Printability of Fresh Concrete for Formwork-Free Concrete Onsite 3D Printing Technology (CONPrint3D) - Ogura Hiroki, Nerella Venkatesh, Mechtcherine Viktor (2018-08)
Developing and Testing of Strain-Hardening Cement-Based Composites (SHCC) in the Context of 3D Printing - Panda Biranchi, Lim Jian, Tan Ming (2019-02)
Mechanical Properties and Deformation Behavior of Early-Age Concrete in the Context of Digital Construction - Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
3D Printable Concrete:
Mixture-Design and Test-Methods - Roussel Nicolas (2018-05)
Rheological Requirements for Printable Concretes - Shahzad Qamar, Li Fangyuan (2023-09)
An Innovative Method for Buildability-Assessment of 3D Printed Concrete at Early-Ages - Shahzad Qamar, Shen Junyi, Naseem Rabia, Yao Yonggang et al. (2021-10)
Influence of Phase-Change-Material on Concrete Behavior for Construction 3D Printing - Shahzad Qamar, Wang Xujiang, Wang Wenlong, Wan Yi et al. (2020-06)
Coordinated Adjustment and Optimization of Setting-Time, Flowability, and Mechanical Strength for Construction 3D Printing Material Derived from Solid Waste - Suiker Akke (2018-01)
Mechanical Performance of Wall Structures in 3D Printing Processes:
Theory, Design Tools and Experiments - Yang Yekai, Wu Chengqing, Liu Zhongxian, Zhang Hai (2021-12)
3D Printing Ultra-High-Performance Fiber-Reinforced Concrete under Triaxial Confining Loads - Zhang Jingchuan, Wang Jialiang, Dong Sufen, Yu Xun et al. (2019-07)
A Review of the Current Progress and Application of 3D Printed Concrete
10 Citations
- Agegn Adamu, Regassa Yohannes, Angassa Kenatu, Mekonnen Kebede (2026-01)
Systematic Review on 3D Concrete Printing Technology:
Breakthroughs and Challenges - Dubey Pratik, Maurya Madan (2026-01)
A Comprehensive Review of 3D Printing in Construction:
Technology, Materials, and Digital Workflow - Iqbal Imtiaz, Kasim Tala, Besklubova Svetlana, Inqiad Waleed et al. (2025-12)
Exploring Knowledge Domains and Future Research Directions in 3D Printed Concrete:
A Bibliometric and Systematic Review - Tong Zhongling, Guan Qingtao, Elabbasy Ahmed, Ateah Ali et al. (2025-12)
Empowering 3D Printed Concrete:
Discovering the Impact of Steel Fiber Reinforcement on Mechanical Performance - Zhang Hui, Wu Jie, Huang Bo-Tao, Yu Rena et al. (2025-11)
Cross-Scale Mechanisms of Anisotropy in 3D-Printed Ultra-High-Performance Concrete - Jamifar Vahid, Eskandari‐Naddaf Hamid, Dehestani Mehdi (2025-10)
Optimizing Electric Arc Furnace Dust Utilization in 3D Printed Reinforced Cement Paste Using D‐Optimal Design of Experiments and Gray Wolf Optimization - Varghese Renny, Rangel Bárbara, Maia Lino (2025-10)
Strength, Structure, and Sustainability in 3D-Printed Concrete Using Different Types of Fiber Reinforcements - Si Wen, Khan Mehran, McNally Ciaran (2025-06)
A Comprehensive Review of Rheological Dynamics and Process Parameters in 3D Concrete Printing - Hopkins Ben, Si Wen, Khan Mehran, McNally Ciaran (2025-06)
Recent Advancements in Polypropylene Fiber-Reinforced 3D-Printed Concrete:
Insights into Mix Ratios, Testing Procedures, and Material Behaviour - Shahzad Qamar, Akbar Muhammad, Alzara Majed, Yosri Ahmed et al. (2024-07)
Time-Dependent Buildability Evaluation of 3D Printed Concrete:
Experimental Validation and Numerical Simulation
BibTeX
@article{shah_abba_akba_sabi.2024.IoPSaNDotFAi3PUHPC,
author = "Qamar Shahzad and Nadeem Abbas and Muhammad Akbar and Ehab Sabi and Blessen Skariah Thomas and Muhammad Usman Arshid",
title = "Influence of Print-Speed and Nozzle-Diameter on the Fiber-Alignment in 3D Printed Ultra-High-Performance Concrete",
doi = "10.3389/fmats.2024.1355647",
year = "2024",
journal = "Frontiers in Materials",
volume = "11",
}
Formatted Citation
Q. Shahzad, N. Abbas, M. Akbar, E. Sabi, B. S. Thomas and M. U. Arshid, “Influence of Print-Speed and Nozzle-Diameter on the Fiber-Alignment in 3D Printed Ultra-High-Performance Concrete”, Frontiers in Materials, vol. 11, 2024, doi: 10.3389/fmats.2024.1355647.
Shahzad, Qamar, Nadeem Abbas, Muhammad Akbar, Ehab Sabi, Blessen Skariah Thomas, and Muhammad Usman Arshid. “Influence of Print-Speed and Nozzle-Diameter on the Fiber-Alignment in 3D Printed Ultra-High-Performance Concrete”. Frontiers in Materials 11 (2024). https://doi.org/10.3389/fmats.2024.1355647.