Skip to content

Effect of Fly-Ash and Ground Waste Glass as Cement Replacement in Concrete 3D Printing for Sustainable Construction (2024-09)

10.3389/fbuil.2024.1430174

Samrani Phebe, Cao Yifang, Fimbres-Weihs Gustavo, Sanjaya Eric, Abbas Ali
Journal Article - Frontiers in Built Environment, Vol. 10

Abstract

Concrete 3D printing is a promising manufacturing technology for producing geometrically complex structures efficiently and cost-effectively, by eliminating the need for formwork, reducing labor, and minimizing waste. This method has the potential to lower carbon emissions and resource use. However, it does not mitigate the carbon emissions associated with cement production. Nonetheless, utilizing waste materials in concrete 3D printing may reduce concrete carbon emissions and support recycling. This study investigates the use of two industrial waste materials–fly ash (FA) and ground waste glass (GWG)–as partial substitutes for ordinary Portland Cement (PC) in 3D printable cement paste. The chemical composition, particle size distribution, rheological properties, and flexural strength of the mixtures were analyzed. Results show that specimens containing waste materials achieved strengths comparable to traditional cement mixtures. The flexural strength reduction in 3D printed versus cast specimens varied across mixtures: control (66% reduction), FA20 (35%), FA10-GWG10 (35%), GWG10 (32%), FA10 (11%), and GWG20 (4%). Hence, incorporating waste materials in concrete 3D printing is recommended, as it maintains mechanical integrity while promoting recycling and upcycling of industrial waste.

15 References

  1. Batikha Mustafa, Jotangia Rahul, Baaj Mohamad, Mousleh Ibrahim (2021-12)
    3D Concrete Printing for Sustainable and Economical Construction:
    A Comparative Study
  2. Dey Dhrutiman, Srinivas Dodda, Panda Biranchi, Suraneni Prannoy et al. (2022-02)
    Use of Industrial Waste-Materials for 3D Printing of Sustainable Concrete:
    A Review
  3. Liu Junli, Li Shuai, Fox Kate, Tran Jonathan (2021-12)
    3D Concrete Printing of Bio-Inspired Bouligand Structure:
    A Study on Impact-Resistance
  4. Mir Namra, Khan Shoukat, Kul Anil, Şahin Oğuzhan et al. (2022-08)
    Life Cycle Assessment of Construction and Demolition Waste-Based Geopolymers Suited for Use in 3D Additive Manufacturing
  5. Moini Mohamadreza, Olek Jan, Youngblood Jeffrey, Magee Bryan et al. (2018-08)
    Additive Manufacturing and Performance of Architectured Cement-Based Materials
  6. Muthukrishnan Shravan, Kua Harn, Yu Ling, Chung Jacky (2020-05)
    Fresh Properties of Cementitious Materials Containing Rice-Husk-Ash for Construction 3D Printing
  7. Panda Biranchi, Lim Jian, Tan Ming (2019-02)
    Mechanical Properties and Deformation Behavior of Early-Age Concrete in the Context of Digital Construction
  8. Rehman Atta, Kim Jung-Hoon (2021-07)
    3D Concrete Printing:
    A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics
  9. Rehman Atta, Lee Sang-Min, Kim Jung-Hoon (2020-06)
    Use of Municipal Solid-Waste Incineration-Ash in 3D Printable Concrete
  10. Reiter Lex, Wangler Timothy, Roussel Nicolas, Flatt Robert (2018-06)
    The Role of Early-Age Structural Build-Up in Digital Fabrication with Concrete
  11. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  12. Şahin Oğuzhan, İlcan Hüseyin, Ateşli Anıl, Kul Anil et al. (2021-05)
    Construction and Demolition Waste-Based Geopolymers Suited for Use in 3D Additive Manufacturing
  13. Singh Amardeep, Wang Yufei, Zhou Yiyi, Sun Junbo et al. (2023-10)
    Utilization of Antimony-Tailings in Fiber-Reinforced 3D Printed Concrete:
    A Sustainable Approach for Construction Materials
  14. Yao Xiaofei, Lyu Xin, Sun Junbo, Wang Bolin et al. (2023-03)
    AI-Based Performance Prediction for 3D Printed Concrete Considering Anisotropy and Steam-Curing Condition
  15. Zhu Binrong, Wang Yufei, Sun Junbo, Wei Yang et al. (2023-10)
    An Experimental Study on the Influence of Waste-Rubber-Particles on the Compressive, Flexural and Impact Properties of 3D Printable Sustainable Cementitious Composites

6 Citations

  1. Bugarin Juan, Hajjar Ayla, Ssengooba Aloysious, Rangel Bárbara et al. (2026-01)
    Advancing Circular Bioeconomy and Sustainable Construction in the Iberian Peninsula:
    Addressing the Potential of Timber Residues for 3D Printing
  2. Basith Mydeen Pitchai Mohamed Abdul (2025-12)
    Polymer-Enhanced Composites for 3D Concrete Printing:
    A Review of Materials, Processes, and Performance
  3. Maroszek Marcin, Rudziewicz Magdalena, Hebda Marek (2025-09)
    Recycled Components in 3D Concrete Printing Mixes:
    A Review
  4. Gerges Isabelle, Farraj Faten, Youssef Nicolas, Antczak Emmanuel et al. (2025-07)
    Methodologies to Design Optimum 3D Printable Mortar Mix:
    A Review
  5. Mishra Sanjeet, Upadhyay Bikash, Das Bibhuti (2025-06)
    3D Printing Aspects of Fly Ash and GGBS Admixed Binary and Ternary Blended Cementitious Mortar
  6. Tseng Kuo-Chang, Chi Maochieh, Yeih Weichung, Huang Ran (2025-04)
    Influence of Slag/Fly Ash as Partial Cement Replacement on Printability and Mechanical Properties of 3D-Printed Concrete

BibTeX
@article{samr_cao_fimb_sanj.2024.EoFAaGWGaCRiC3PfSC,
  author            = "Phebe Samrani and Yifang Cao and Gustavo Fimbres-Weihs and Eric Sanjaya and Ali Abbas",
  title             = "Effect of Fly-Ash and Ground Waste Glass as Cement Replacement in Concrete 3D Printing for Sustainable Construction",
  doi               = "10.3389/fbuil.2024.1430174",
  year              = "2024",
  journal           = "Frontiers in Built Environment",
  volume            = "10",
}
Formatted Citation

P. Samrani, Y. Cao, G. Fimbres-Weihs, E. Sanjaya and A. Abbas, “Effect of Fly-Ash and Ground Waste Glass as Cement Replacement in Concrete 3D Printing for Sustainable Construction”, Frontiers in Built Environment, vol. 10, 2024, doi: 10.3389/fbuil.2024.1430174.

Samrani, Phebe, Yifang Cao, Gustavo Fimbres-Weihs, Eric Sanjaya, and Ali Abbas. “Effect of Fly-Ash and Ground Waste Glass as Cement Replacement in Concrete 3D Printing for Sustainable Construction”. Frontiers in Built Environment 10 (2024). https://doi.org/10.3389/fbuil.2024.1430174.