Real-Time-Assessment of Smart Concrete Inspection with Piezoelectric Sensors (2023-09)¶
, , , , ,
Journal Article - Electronics, Vol. 12, Iss. 18, No. 3762
Abstract
Utilization of an Electromechanical impedance (EMI) technique with Piezoelectric (PZT) sensors has showed potential for Structural Health Monitoring (SHM). The changes in mechanical structure via flexural bending and cracking can be detected by monitoring the deviations in electrical impedance signals recorded with embedded PZT sensors. This paper has conducted a comprehensive study on the potential of an EMI technique with embedded PZT sensors with 3D Concrete Printing (3DCP) structures subjected to flexural bending test until plastic failure. The impact of different Piezoelectric housing methods and materials has been studied comprehensively through the monitoring of EMI signals. Experimental results indicate that material housing types and thickness affect the sensitivity of EMI readings but also performed as a reinforcement when a load is directly applied. The embedded PZT sensors with the EMI technique have shown strong potential to address the cost and lifecycle challenges posed by traditional construction methods as the insertion of PZT sensors seamlessly functions with 3DCP workflows. Further developmental work can be carried out to address the sensitivity of the sensor, performance as a reinforcement, and installation automation. The results proved that the coated sensors could detect fractures in 3DCP concrete with decreased sensitivity on thicker coating layers through the variance in materials and coating thickness in the paper.
¶
19 References
- Barjuei Erfan, Courteille Eric, Rangeard Damien, Marie F. et al. (2022-07)
Real-Time Vision-Based Control of Industrial Manipulators for Layer-Width Setting in Concrete 3D Printing Applications - Geng Zifan, She Wei, Zuo Wenqiang, Lyu Kai et al. (2020-09)
Layer-Interface Properties in 3D Printed Concrete:
Dual Hierarchical Structure and Micromechanical Characterization - Hosseini Ehsan, Zakertabrizi Mohammad, Korayem Asghar, Xu Guanzhong (2019-03)
A Novel Method to Enhance the Inter-Layer Bonding of 3D Printing Concrete:
An Experimental and Computational Investigation - Kazemian Ali, Yuan Xiao, Davtalab Omid, Khoshnevis Behrokh (2019-01)
Computer-Vision for Real-Time Extrusion-Quality-Monitoring and Control in Robotic Construction - Kocherla Amarteja, Kamakshi Tippabhotla, Subramaniam Kolluru (2021-11)
In-Situ Embedded PZT Sensor for Monitoring 3D Concrete Printing:
Application in Alkali-Activated Fly-Ash-Slag Geopolymers - Kruger Jacques, Cho Seung, Zeranka Stephan, Vintila Cristian et al. (2019-12)
3D Concrete Printer Parameter Optimization for High-Rate Digital Construction Avoiding Plastic Collapse - Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
3D Concrete Printing:
A Lower-Bound Analytical Model for Buildability-Performance-Quantification - Ma Guowei, Buswell Richard, Silva Wilson, Wang Li et al. (2022-03)
Technology Readiness:
A Global Snapshot of 3D Concrete Printing and the Frontiers for Development - Ma Guowei, Li Yanfeng, Wang Li, Zhang Junfei et al. (2020-01)
Real-Time Quantification of Fresh and Hardened Mechanical Property for 3D Printing Material by Intellectualization with Piezoelectric Transducers - Marchment Taylor, Sanjayan Jay, Xia Ming (2019-03)
Method of Enhancing Inter-Layer Bond Strength in Construction-Scale 3D Printing with Mortar by Effective Bond Area Amplification - Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2022-04)
A Plastic Shrinkage Cracking-Risk-Model for 3D Printed Concrete Exposed to Different Environments - Quah Tan, Tay Yi, Lim Jian, Tan Ming et al. (2023-03)
Concrete 3D Printing:
Process-Parameters for Process-Control, Monitoring and Diagnosis in Automation and Construction - Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete - Suiker Akke, Wolfs Robert, Lucas Sandra, Salet Theo (2020-06)
Elastic Buckling and Plastic Collapse During 3D Concrete Printing - Ting Guan, Quah Tan, Lim Jian, Tay Yi et al. (2022-01)
Extrudable Region Parametrical Study of 3D Printable Concrete Using Recycled-Glass Concrete - Wang Li, Tian Zehao, Ma Guowei, Zhang Mo (2020-02)
Inter-Layer Bonding Improvement of 3D Printed Concrete with Polymer-Modified Mortar:
Experiments and Molecular Dynamics Studies - Wolfs Robert, Bos Freek, Salet Theo (2019-03)
Hardened Properties of 3D Printed Concrete:
The Influence of Process Parameters on Inter-Layer Adhesion - Wolfs Robert, Bos Freek, Strien Emiel, Salet Theo (2017-06)
A Real-Time Height Measurement and Feedback System for 3D Concrete Printing - Yao Hao, Xie Zonglin, Li Zemin, Huang Chuhan et al. (2021-11)
The Relationship Between the Rheological Behavior and Inter-Layer Bonding Properties of 3D Printing Cementitious Materials with the Addition of Attapulgite
6 Citations
- Mani Aravindhraj, Sekar Muthu (2025-08)
NDT Techniques for Evaluating Mechanical Properties in Green and Fiber-Reinforced 3D Printable Mixes - Garcés Gonzalo, García-Alvarado Rodrigo, Bunster Victor, Muñoz-Sanguinetti Claudia (2025-06)
Additive Construction 4.0:
A Systematic Review of 3D Concrete Printing for Construction 4.0 - Alizamir Meysam, Kim Sungwon, Ikram Rana, Ahmed Kaywan et al. (2025-06)
A Reliable Hybrid Extreme Learning Machine-Metaheuristic Framework for Enhanced Strength Prediction of 3D-Printed Fiber-Reinforced Concrete - Shazad Qamar, Li Fangyuan (2025-01)
Interfacial Bond-Effects on Shear-Strength and Damage in 3D Printed Concrete Structures:
A Combined Experimental and Numerical Study - Chen Mingxu, Xu Jiabin, Yuan Lianwang, Zhao Piqi et al. (2024-03)
Use of Creep and Recovery-Protocol to Assess the Printability of Fiber-Reinforced 3D Printed White-Portland-Cement Composites - Wang Li, Wang Fucheng, Li Rong, Wang Qiao (2023-12)
Interfacial Constitutive Model of 3D Printed Fiber-Reinforced Concrete Composites and Its Experimental Validation
BibTeX
@article{quah_vo_tay_tan.2023.RTAoSCIwPS,
author = "Tan Kai Noel Quah and Tran Vy Khanh Vo and Yi Wei Daniel Tay and Ming Jen Tan and Teck Neng Wong and King Ho Holden Li",
title = "Real-Time-Assessment of Smart Concrete Inspection with Piezoelectric Sensors",
doi = "10.3390/electronics12183762",
year = "2023",
journal = "Electronics",
volume = "12",
number = "18",
pages = "3762",
}
Formatted Citation
T. K. N. Quah, T. V. K. Vo, Y. W. D. Tay, M. J. Tan, T. N. Wong and K. H. H. Li, “Real-Time-Assessment of Smart Concrete Inspection with Piezoelectric Sensors”, Electronics, vol. 12, no. 18, p. 3762, 2023, doi: 10.3390/electronics12183762.
Quah, Tan Kai Noel, Tran Vy Khanh Vo, Yi Wei Daniel Tay, Ming Jen Tan, Teck Neng Wong, and King Ho Holden Li. “Real-Time-Assessment of Smart Concrete Inspection with Piezoelectric Sensors”. Electronics 12, no. 18 (2023): 3762. https://doi.org/10.3390/electronics12183762.