Interface Bonding Characteristics of 3D Printed Ultra-High-Performance Concrete After Elevated Temperatures (2024-06)¶
, , Liu Zhongxian, Zhang Yan,
Journal Article - Journal of Building Engineering, Vol. 93, No. 109801
Abstract
This study explored the influence of elevated-temperature exposure and interlayer time intervals on the interface bonding strength of hybrid-fibre 3D printed ultra-high-performance concrete (3DP-UHPC), and analysed the potential mechanisms driving these observed results. A relationship model for the bonding strength of hybrid fibre 3DP-UHPC in elevated-temperature environments was proposed. Results revealed that at 800 ◦C, localized damage occurred in 3DP-UHPC, but the addition of 0.5 % polypropylene fibres delayed the occurrence of spalling behaviour and enhanced its elevated-temperature resistance. Furthermore, as the time interval increased, the bonding strength of 3DP-UHPC gradually decreased, particularly at temperatures above 400 ◦C, where the melting and volatilization of polypropylene fibres negatively affected the bonding strength. The study suggested that polypropylene fibres inhibited spalling behaviour of 3DP-UHPC after elevated temperatures through moisture loss and thermal stability. However, they may also lead to interface weakening, resulting in a decrease in bonding strength. These findings provide important guidance for further development and design of 3DP-UHPC structures in elevated-temperature environments.
¶
23 References
- Agustí-Juan Isolda, Habert Guillaume (2016-11)
Environmental Design Guidelines for Digital Fabrication - Agustí-Juan Isolda, Müller Florian, Hack Norman, Wangler Timothy et al. (2017-04)
Potential Benefits of Digital Fabrication for Complex Structures:
Environmental Assessment of a Robotically Fabricated Concrete Wall - Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2021-02)
Fiber-Orientation Effects on Ultra-High-Performance Concrete Formed by 3D Printing - Bai Gang, Wang Li, Wang Fang, Ma Guowei (2021-08)
In-Process Reinforcing Method:
Dual 3D Printing Procedure for Ultra-High-Performance Concrete Reinforced Cementitious Composites - Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
3D Printing Using Concrete-Extrusion:
A Roadmap for Research - Dong Liang, Yang Yekai, Liu Zhongxian, Ren Quanchang et al. (2022-07)
Microstructure and Mechanical Behavior of 3D Printed Ultra-High-Performance Concrete after Elevated Temperatures - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Hardened Properties of High-Performance Printing Concrete - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Mix-Design and Fresh Properties for High-Performance Printing Concrete - Ma Guowei, Bai Gang, Wang Li, Wang Fang (2022-07)
Explosion-Resistance of 3D Printing Ultra-High-Performance Concrete Based on Contact-Explosion Tests - Ma Guowei, Sun Junbo, Wang Li, Aslani Farhad et al. (2018-09)
Electromagnetic and Microwave-Absorbing Properties of Cementitious Composite for 3D Printing Containing Waste Copper Solids - Panda Biranchi, Mohamed Nisar, Paul Suvash, Bhagath Singh Gangapatnam et al. (2019-07)
The Effect of Material Fresh Properties and Process Parameters on Buildability and Inter-Layer Adhesion of 3D Printed Concrete - Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar - Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction - Pham Luong, Tran Jonathan, Sanjayan Jay (2020-04)
Steel-Fiber-Reinforced 3D Printed Concrete:
Influence of Fiber Sizes on Mechanical Performance - Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete - Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2021-06)
Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete:
Correction - Wang Li, Ma Hui, Li Zhijian, Ma Guowei et al. (2021-07)
Cementitious Composites Blending with High Belite-Sulfoaluminate and Medium-Heat Portland Cements for Large-Scale 3D Printing - Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
Large-Scale 3D Printing Concrete Technology:
Current Status and Future Opportunities - Yang Yekai, Wu Chengqing, Liu Zhongxian (2023-01)
Rate-Dependent Behavior of 3D Printed Ultra-High-Performance Fiber-Reinforced Concrete Under Dynamic Splitting Tensile - Yang Yekai, Wu Chengqing, Liu Zhongxian, Li Jun et al. (2022-02)
Characteristics of 3D Printing Ultra-High-Performance Fiber-Reinforced Concrete Under Impact Loading - Yang Yekai, Wu Chengqing, Liu Zhongxian, Wang Hailiang et al. (2021-10)
Mechanical Anisotropy of Ultra-High-Performance Fiber-Reinforced Concrete for 3D Printing - Yang Yekai, Wu Chengqing, Liu Zhongxian, Zhang Hai (2021-12)
3D Printing Ultra-High-Performance Fiber-Reinforced Concrete under Triaxial Confining Loads - Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
Mix-Design Concepts for 3D Printable Concrete:
A Review
13 Citations
- Cheng Jianhua, Chen Meng, Ge Yulin, Zhang Tong (2025-12)
Mechanical Behavior and Damage Evolution of 3D-Printed Engineered Cementitious Composites at Elevated Temperatures:
Insights from Acoustic Emission Characterization - Chen Wenguang, Yu Jie, Ye Junhong, Yu Jiangtao et al. (2025-11)
3D Printed High-Performance Fiber-Reinforced Cementitious Composites:
Fresh, Mechanical, and Microstructural Properties - Delavar Mohammad, Aslani Farhad, Sercombe Tim (2025-10)
Cracking Behaviour in 3D Concrete Printed Fiber-Reinforced Cementitious Composites:
A Review - Medeiros Fernanda, Anjos Marcos, Maia José, Dias Leonardo et al. (2025-08)
Effect of Sisal Fibers on the Behavior of 3D-Printed Cementitious Mixtures Exposed to High Temperatures - Cai Yilin, Hartell Julie, Aryal Ashrant (2025-07)
Real-Time Multimodal Sensing System for Additive Construction by Extrusion:
Integrating Thermal, Depth and RGB Data - Dong Liang, Wu Chengqing, Liu Zhongxian, Wu Pengtao et al. (2025-07)
Chloride Transport Anisotropy and Interfacial Degradation in 3D-Printed Ultra-High-Performance Concrete:
Multi-Scale Evaluation and Engineering Implications - Yang Shutong, Chen Zhengyuan, Lan Tian, Yang Tiange (2025-05)
Quantitative Evaluation for Fracture Properties of 3D Printed Ultra-High-Performance Concrete Loaded in Different Directions - Ravichandran Darssni, Prem Prabhat, Giridhar Greeshma, Bhaskara Gollapalli et al. (2025-04)
Time-Dependent Properties of 3D-Printed UHPC with Silica Sand, Copper Slag, and Fibers - Şahin Hatice, Kaya Yahya, Akgümüş Fatih, Mardani Naz et al. (2025-03)
Degradation of Mechanical Properties of 3D Fiber Reinforced Printed Concrete Mixtures Exposed to Elevated Temperatures - Dong Enlai, Yuan Hanquan, Chen Yu, Jia Lutao et al. (2025-01)
Printing Large-Size Eggshell-Shaped Elements with Ultra-High-Performance Concrete:
From Material-Design to Structural Bearing-Capacity-Assessment - Nan Bo, Qiao Youxin, Leng Junjie, Bai Yikui (2025-01)
Advancing Structural Reinforcement in 3D Printed Concrete:
Current Methods, Challenges, and Innovations - Takva Çağatay, Top Semahat, Gökgöz Berru, Gebel Şeyma et al. (2024-11)
Applicability of 3D Concrete Printing Technology in Building Construction with Different Architectural Design Decisions in Housing - Lan Tian, Yang Shutong, Xu Mingqi, Chen Zhengyuan et al. (2024-10)
Quantitative Assessment of Interfacial-Fracture-Properties in 3D Printed Alkali-Activated Recycled Sand Concrete Based on a Closed-Form Fracture-Model
BibTeX
@article{dong_yang_liu_zhan.2024.IBCo3PUHPCAET,
author = "Liang Dong and Yekai Yang and Zhongxian Liu and Yan Zhang and Chengqing Wu",
title = "Interface Bonding Characteristics of 3D Printed Ultra-High-Performance Concrete After Elevated Temperatures",
doi = "10.1016/j.jobe.2024.109801",
year = "2024",
journal = "Journal of Building Engineering",
volume = "93",
pages = "109801",
}
Formatted Citation
L. Dong, Y. Yang, Z. Liu, Y. Zhang and C. Wu, “Interface Bonding Characteristics of 3D Printed Ultra-High-Performance Concrete After Elevated Temperatures”, Journal of Building Engineering, vol. 93, p. 109801, 2024, doi: 10.1016/j.jobe.2024.109801.
Dong, Liang, Yekai Yang, Zhongxian Liu, Yan Zhang, and Chengqing Wu. “Interface Bonding Characteristics of 3D Printed Ultra-High-Performance Concrete After Elevated Temperatures”. Journal of Building Engineering 93 (2024): 109801. https://doi.org/10.1016/j.jobe.2024.109801.