Skip to content

Effective Factors and a Prediction Method on Extrusion Flow of 3D Printed Concrete (2025-11)

10.32047/cwb.2025.30.2.3

Zhou Jiehang, Du Longyu, Wu Kai, Lai Jianzhong, Zhao Xinzhen
Journal Article - Cement Wapno Beton, Vol. 30, Iss. 2, pp. 124-143

Abstract

The size control of 3D printed concrete filament limits application of 3D printed concrete technology. The accuracy of 3D printed concrete will benefit from stability of extrusion flow. Therefore, it is necessary to study the effective factors on extrusion flow. In this paper, the effects from fluidity and mass of loading in material tank on extrusion flow were discussed. The special phenomenon effective on extrusion flow during the printing process was discovered and named as ‘collapse’ and ‘critical loading’. Meanwhile, the liner relationship between fluidity and extrusion flow per unit mass of initial loading in material tank was observed. A feasible method for extrusion flow prediction was proposed based on mathematical results in this study. And some advices were provided according to the experience from this research.

25 References

  1. Abbaoui Khalid, Korachi Issam, Jai Mostapha, Šeta Berin et al. (2024-04)
    3D Concrete Printing Using Computational Fluid Dynamics:
    Modeling of Material-Extrusion with Slip-Boundaries
  2. Ahi Oğulcan, Ertunç Özgür, Bundur Zeynep, Bebek Özkan (2024-02)
    Automated Flow-Rate-Control of Extrusion for 3D Concrete Printing Incorporating Rheological Parameters
  3. Borg Costanzi Christopher, Ahmed Zeeshan, Schipper Roel, Bos Freek et al. (2018-07)
    3D Printing Concrete on Temporary Surfaces:
    The Design and Fabrication of a Concrete Shell Structure
  4. Carneau Paul, Mesnil Romain, Roussel Nicolas, Baverel Olivier (2020-04)
    Additive Manufacturing of Cantilever:
    From Masonry to Concrete 3D Printing
  5. Douba AlaEddin, Badjatya Palash, Kawashima Shiho (2022-03)
    Enhancing Carbonation and Strength of MgO Cement Through 3D Printing
  6. Kloft Harald, Krauss Hans-Werner, Hack Norman, Herrmann Eric et al. (2020-05)
    Influence of Process Parameters on the Inter-Layer Bond Strength of Concrete Elements Additive Manufactured by Shotcrete 3D Printing
  7. Kruger Jacques, Plessis Anton, Zijl Gideon (2020-12)
    An Investigation into the Porosity of Extrusion-Based 3D Printed Concrete
  8. Li Leo, Xiao Bofeng, Fang Z., Xiong Z. et al. (2020-11)
    Feasibility of Glass-Basalt Fiber-Reinforced Seawater Coral Sand Mortar for 3D Printing
  9. Liu Chao, Wang Xianggang, Chen Yuning, Zhang Chao et al. (2021-06)
    Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Stability, Rheological Properties, and Printability of 3D Printing Foam-Concrete
  10. Ma Guowei, Hu Tingyu, Wang Fang, Liu Xiongfei et al. (2023-02)
    Magnesium Phosphate Cement for Powder-Based 3D Concrete Printing:
    Systematic Evaluation and Optimization of Printability and Printing Quality
  11. Markin Slava, Krause Martin, Otto Jens, Schröfl Christof et al. (2021-06)
    3D Printing with Foam-Concrete:
    From Material Design and Testing to Application and Sustainability
  12. Mechtcherine Viktor, Nerella Venkatesh, Will Frank, Näther Mathias et al. (2019-08)
    Large-Scale Digital Concrete Construction:
    CONPrint3D Concept for On-Site, Monolithic 3D Printing
  13. Nguyen Vuong, Nguyen-Xuan Hung, Panda Biranchi, Tran Jonathan (2022-03)
    3D Concrete Printing Modelling of Thin-Walled Structures
  14. Ramakrishnan Sayanthan, Muthukrishnan Shravan, Sanjayan Jay, Pasupathy Kirubajiny (2021-08)
    Concrete 3D Printing of Lightweight Elements Using Hollow-Core Extrusion of Filaments
  15. Reinold Janis, Nerella Venkatesh, Mechtcherine Viktor, Meschke Günther (2022-02)
    Extrusion-Process-Simulation and Layer-Shape-Prediction During 3D Concrete Printing Using the Particle-Finite-Element-Method
  16. Singh Amardeep, Liu Qiong, Xiao Jianzhuang, Lyu Qifeng (2022-02)
    Mechanical and Macrostructural Properties of 3D Printed Concrete Dosed with Steel-Fibers under Different Loading-Direction
  17. Tran Mien, Cu Yen, Le Chau (2021-10)
    Rheology and Shrinkage of Concrete Using Polypropylene-Fiber for 3D Concrete Printing
  18. Wang Li, Ma Hui, Li Zhijian, Ma Guowei et al. (2021-07)
    Cementitious Composites Blending with High Belite-Sulfoaluminate and Medium-Heat Portland Cements for Large-Scale 3D Printing
  19. Wei Ying, Han Song, Chen Ziwei, Lu Jianxian et al. (2024-04)
    Numerical Simulation of 3D Concrete Printing Derived from Printer Head and Printing Process
  20. Xiao Jianzhuang, Lv Zhenyuan, Duan Zhenhua, Hou Shaodan (2022-03)
    Study on Preparation and Mechanical Properties of 3D Printed Concrete with Different Aggregate-Combinations
  21. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-02)
    Effect of Polyethylene-Fiber Content on Workability and Mechanical-Anisotropic Properties of 3D Printed Ultra-High-Ductile Concrete
  22. Yu Qian, Zhu Binrong, Li Xuesen, Meng Lingqi et al. (2023-04)
    Investigation of the Rheological and Mechanical Properties of 3D Printed Eco-Friendly Concrete with Steel-Slag
  23. Zhang Chao, Hou Zeyu, Chen Chun, Zhang Yamei et al. (2019-09)
    Design of 3D Printable Concrete Based on the Relationship Between Flowability of Cement-Paste and Optimum Aggregate-Content
  24. Zhou Jiehang, Lai Jianzhong, Du Longyu, Wu Kai et al. (2021-12)
    Effect of Directionally Distributed Steel-Fiber on Static and Dynamic Properties of 3D Printed Cementitious Composite
  25. Zhu Binrong, Nematollahi Behzad, Pan Jinlong, Zhang Yang et al. (2021-04)
    3D Concrete Printing of Permanent Formwork for Concrete Column Construction

0 Citations

BibTeX
@article{zhou_du_wu_lai.2025.EFaaPMoEFo3PC,
  author            = "Jiehang Zhou and Longyu Du and Kai Wu and Jianzhong Lai and Xinzhen Zhao",
  title             = "Effective Factors and a Prediction Method on Extrusion Flow of 3D Printed Concrete",
  doi               = "10.32047/cwb.2025.30.2.3",
  year              = "2025",
  journal           = "Cement Wapno Beton",
  volume            = "30",
  number            = "2",
  pages             = "124--143",
}
Formatted Citation

J. Zhou, L. Du, K. Wu, J. Lai and X. Zhao, “Effective Factors and a Prediction Method on Extrusion Flow of 3D Printed Concrete”, Cement Wapno Beton, vol. 30, no. 2, pp. 124–143, 2025, doi: 10.32047/cwb.2025.30.2.3.

Zhou, Jiehang, Longyu Du, Kai Wu, Jianzhong Lai, and Xinzhen Zhao. “Effective Factors and a Prediction Method on Extrusion Flow of 3D Printed Concrete”. Cement Wapno Beton 30, no. 2 (2025): 124–43. https://doi.org/10.32047/cwb.2025.30.2.3.