Skip to content

Effect of Fiber Content and Alignment on the Mechanical Properties of 3D Printing Cementitious Composites (2021-04)

10.3390/ma14092223

Zhang Hao, Zhu Liming, Zhang Fan,  Yang Mijia
Journal Article - Materials, Vol. 14, Iss. 9

Abstract

This paper studies aligned glass fiber-reinforced composites for printing. To determine the influence of fiber content and alignment on the mechanical properties of this novel material, a large number of standard test specimens were prepared, which included samples fabricated by mold-casting, randomly dispersed fiber reinforced mixtures and aligned fiber cement composites containing 10 types of fiber volume ratios manufactured by nozzle sizes ranging of 24 and 10 mm (fiber length = 12 mm). Mechanical properties and failure modes of the specimens under compression and flexural tests were studied experimentally. The anisotropic behaviors of printed samples were analyzed by different loading directions. As a result, the compressive and flexural strength of printed samples showed obvious anisotropy. With the increase of fiber volume ratio, flexural strength of the fiber reinforced composite was elevated tremendously but its compression strength reduced slightly. Moreover, fiber alignment also had a significant influence on the mechanical properties of the fiber reinforced composite. The composite cement-based material with 1 vol.-% aligned fiber exhibited an excellent flexural strength of 9.38 MPa, which increased by 483% in comparison to that of the plain cement paste.

11 References

  1. Asprone Domenico, Menna Costantino, Bos Freek, Salet Theo et al. (2018-06)
    Rethinking Reinforcement for Digital Fabrication with Concrete
  2. Feng Peng, Meng Xinmiao, Chen Jian-Fei, Ye Lieping (2015-06)
    Mechanical Properties of Structures 3D Printed with Cementitious Powders
  3. Hambach Manuel, Möller Hendrik, Neumann Thomas, Volkmer Dirk (2016-08)
    Portland-Cement-Paste with Aligned Carbon-Fibers Exhibiting Exceptionally High Flexural Strength (>100 MPa)
  4. Hambach Manuel, Volkmer Dirk (2017-02)
    Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste
  5. Kreiger Eric, Kreiger Megan, Case Michael (2019-04)
    Development of the Construction Processes for Reinforced Additively Constructed Concrete
  6. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Hardened Properties of High-Performance Printing Concrete
  7. Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
    Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing
  8. Marchment Taylor, Sanjayan Jay (2020-09)
    Bond Properties of Reinforcing Bar Penetrations in 3D Concrete Printing
  9. Nematollahi Behzad, Vijay Praful, Sanjayan Jay, Nazari Ali et al. (2018-11)
    Effect of Polypropylene Fiber Addition on Properties of Geopolymers Made by 3D Printing for Digital Construction
  10. Ogura Hiroki, Nerella Venkatesh, Mechtcherine Viktor (2018-08)
    Developing and Testing of Strain-Hardening Cement-Based Composites (SHCC) in the Context of 3D Printing
  11. Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
    Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material

18 Citations

  1. Jamifar Vahid, Eskandari‐Naddaf Hamid, Dehestani Mehdi (2025-10)
    Optimizing Electric Arc Furnace Dust Utilization in 3D Printed Reinforced Cement Paste Using D‐Optimal Design of Experiments and Gray Wolf Optimization
  2. Delavar Mohammad, Aslani Farhad, Sercombe Tim (2025-10)
    Cracking Behaviour in 3D Concrete Printed Fiber-Reinforced Cementitious Composites:
    A Review
  3. Li Fuhai, Xiao Sai, Yang Bo, Li Kepu et al. (2025-09)
    Mechanical Properties and Anisotropy of 3D-Printed Concrete Modified with Multiscale Materials Based on Optimized Printing Process Design
  4. Chen Zhaohui, Yue Ziyi, Gerong Wangdui, Wang Zhenyue et al. (2025-05)
    Effect of Orthotropy and Printing Patterns on the Bending Performance of 3D Printed Concrete Grid Components
  5. Ge Yali, Yao Jie (2024-11)
    Influence of FA and HPMC on the Fresh Properties and Anisotropy of 3D Printing Engineered Cementitious Composites
  6. Qiu Minghong, Qian Ye, Sun Yan, Leung Christopher (2024-07)
    Flexural Performance of Concrete Beams via 3D Printing Stay-in-Place Formwork Followed by Casting of Normal Concrete
  7. Zhi Peng, Wu Yuching, Bai Meiyan (2024-06)
    Determining the Effect of Geometric and Dynamic Properties of Screws on Fiber-Orientation During FRC 3D Printing Based on Discrete Element Simulation
  8. Oulkhir Fatima, Akhrif Iatimad, Jai Mostapha (2024-05)
    3D Concrete Printing Success:
    An Exhaustive Diagnosis and Failure-Modes-Analysis
  9. Dai Pengfei, Lyu Qifeng, Zong Meirong, Zhu Pinghua (2024-01)
    Effect of Waste-Plastic-Fibers on the Printability and Mechanical Properties of 3D Printed Cement Mortar
  10. Khan Shayan, Ghazi Syed, Amjad Hassan, Imram Muhammad et al. (2023-12)
    Emerging Horizons in 3D Printed Cement-Based Materials with Nano-Material-Integration:
    A Review
  11. Zhou Yi, Althoey Fadi, Alotaibi Badr, Gamil Yaser et al. (2023-10)
    An Overview of Recent Advancements in Fiber-Reinforced 3D Printing Concrete
  12. Genc Gokhan, Demircan Ruya, Beyhan Figen, Kaplan Gökhan (2023-10)
    Assessment of the Sustainability and Producibility of Adobe-Constructions Reinforced with Ca-Based Binders:
    Environmental Life-Cycle-Analysis and 3D Printability
  13. Sukontasukkul Piti, Maho Buchit, Komkham Sila, Pianfuengfoo Satharat et al. (2023-07)
    Precise Determination of Initial Printable Time for Cement Mortar 3D Printing Using a Derivative Method
  14. Wang Chaofan, Chen Bing, Vo Thanh, Rezania Mohammad (2023-07)
    Mechanical Anisotropy, Rheology and Carbon Footprint of 3D Printable Concrete:
    A Review
  15. Du Wenfeng, Zhu Liming, Zhang Hao, Zhou Zhiyong et al. (2023-01)
    Experimental and Numerical Investigation of an Innovative 3DPC Thin-Shell Structure
  16. Zhang Yu, Zhang Yunsheng, Yang Lin, Liu Guojian et al. (2022-08)
    Evaluation of Aggregates, Fibers and Voids-Distribution in 3D Printed Concrete
  17. Liu Jie, Lv Chun (2022-03)
    Properties of 3D Printed Polymer Fiber-Reinforced Mortars:
    A Review
  18. Yalçınkaya Çağlar (2022-03)
    Influence of Hydroxypropyl Methylcellulose Dosage on the Mechanical Properties of 3D Printable Mortars with and without Fiber-Reinforcement

BibTeX
@article{zhan_zhu_zhan_yang.2021.EoFCaAotMPo3PCC,
  author            = "Hao Zhang and Liming Zhu and Fan Zhang and Mijia Yang",
  title             = "Effect of Fiber Content and Alignment on the Mechanical Properties of 3D Printing Cementitious Composites",
  doi               = "10.3390/ma14092223",
  year              = "2021",
  journal           = "Materials",
  volume            = "14",
  number            = "9",
}
Formatted Citation

H. Zhang, L. Zhu, F. Zhang and M. Yang, “Effect of Fiber Content and Alignment on the Mechanical Properties of 3D Printing Cementitious Composites”, Materials, vol. 14, no. 9, 2021, doi: 10.3390/ma14092223.

Zhang, Hao, Liming Zhu, Fan Zhang, and Mijia Yang. “Effect of Fiber Content and Alignment on the Mechanical Properties of 3D Printing Cementitious Composites”. Materials 14, no. 9 (2021). https://doi.org/10.3390/ma14092223.