Exploring the 3D Printability of Engineered Cementitious Composites with Internal Curing for Resilient Construction in Arid Regions (2025-07)¶
Zafar Tayyab, ,
Journal Article - Materials, Vol. 18, Iss. 14, No. 3327
Abstract
This study investigates the feasibility of pumice-based internal curing based on the 3D printability of engineered cementitious composites (ECCs) for water-scarce environments and arid regions. Natural river sand was partially replaced with the presoaked pumice lightweight aggregates (LWAs) at two different levels, 30% and 60% by volume, and 50% of the cement was replaced with slag to enhance sustainability. Furthermore, 2% polyethylene (PE) fibers were used to improve the mechanical characteristics and 1% methylcellulose (MC) was used to increase the rheological stability. Pumice aggregates, presoaked for 24 h, were used as an internal curing agent to assess their effect on the printability. Three ECC mixes, CT-PE2-6-10 (control), P30-PE2-6-10 (30% pumice), and P60-PE2-6-10 (60% pumice), were printed using a 3D gantry printing system. A flow table and rheometer were used to evaluate the flowability and rheological properties. Extrudability was measured in terms of dimensional consistency and the coefficient of variation (CV%) to evaluate printability, whereas buildability was determined in terms of the maximum number of layers stacked before failure. All of the mixes met the extrudability criterion (CV < 5%), with P30-PE2-6-10 demonstrating superior printing quality and buildability, having 16 layers, which was comparable with the control mix that had 18 layers.
¶
31 References
- Alghamdi Hussam, Nair Sooraj, Neithalath Narayanan (2019-02)
Insights into Material-Design, Extrusion Rheology, and Properties of 3D Printable Alkali-Activated Fly-Ash-Based Binders - Bakhshi Amir, Zafar Muhammad, Hojati Maryam (2025-02)
A Study on Achieving High Tensile Ductility in 3D-Printable Engineered Cementitious Composites Reinforced with 8mm Fibers - Baz Bilal, Aouad Georges, Rémond Sébastien (2020-01)
Effect of the Printing Method and Mortar’s Workability on Pull-Out Strength of 3D Printed Elements - Bester Frederick, Heever Marchant, Kruger Jacques, Zijl Gideon (2020-11)
Reinforcing Digitally Fabricated Concrete:
A Systems Approach Review - Bhusal Shiva, Sedghi Reza, Hojati Maryam (2023-11)
Evaluating the Printability and Rheological and Mechanical Properties of 3D Printed Earthen Mixes for Carbon-Neutral Buildings - Chen Mingxu, Liu Bo, Li Laibo, Cao Lidong et al. (2020-01)
Rheological Parameters, Thixotropy and Creep of 3D Printed Calcium-Sulfoaluminate-Cement Composites Modified by Bentonite - Cuevas Villalobos Karla, Chougan Mehdi, Martin Falk, Ghaffar Seyed et al. (2021-05)
3D Printable Lightweight Cementitious Composites with Incorporated Waste-Glass-Aggregates and Expanded Microspheres:
Rheological, Thermal and Mechanical Properties - Figueiredo Stefan, Rodríguez Claudia, Ahmed Zeeshan, Bos Derk et al. (2019-03)
An Approach to Develop Printable Strain-Hardening Cementitious Composites - Gomaa Shady, Irizarry Elmer, Ahmed Ayesha, Rosa Raul et al. (2024-11)
3D Printing of Ultra-High-Performance Concrete:
Shape Stability for Various Printing Systems - Hack Norman, Dörfler Kathrin, Walzer Alexander, Wangler Timothy et al. (2020-03)
Structural Stay-in-Place Formwork for Robotic In-Situ Fabrication of Non-Standard Concrete Structures:
A Real-Scale Architectural Demonstrator - Hojati Maryam, Memari Ali, Zahabi Mehrzad, Wu Zhengyu et al. (2022-06)
Barbed-Wire Reinforcement for 3D Concrete Printing - Li Zhijian, Wang Li, Ma Guowei (2020-01)
Mechanical Improvement of Continuous Steel-Micro-Cable-Reinforced Geopolymer Composites for 3D Printing Subjected to Different Loading Conditions - Liu Chao, Wang Xianggang, Chen Yuning, Zhang Chao et al. (2021-06)
Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Stability, Rheological Properties, and Printability of 3D Printing Foam-Concrete - Long Wujian, Tao Jie-Lin, Lin Can, Gu Yucun et al. (2019-08)
Rheology and Buildability of Sustainable Cement-Based Composites Containing Micro-Crystalline Cellulose for 3D Printing - Lu Bing, Qian Ye, Li Mingyang, Weng Yiwei et al. (2019-04)
Designing Spray-Based 3D Printable Cementitious Materials with Fly-Ash-Cenosphere and Air-Entraining Agent - Ma Guowei, Li Zhijian, Wang Li, Bai Gang (2018-10)
Micro-Cable-Reinforced Geopolymer Composite for Extrusion-Based 3D Printing - Marchment Taylor, Sanjayan Jay (2019-10)
Mesh Reinforcing Method for 3D Concrete Printing - Mechtcherine Viktor, Grafe Jasmin, Nerella Venkatesh, Spaniol Erik et al. (2018-05)
3D Printed Steel-Reinforcement for Digital Concrete Construction:
Manufacture, Mechanical Properties and Bond Behavior - Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2020-08)
Plastic Shrinkage Cracking in 3D Printed Concrete - Panda Biranchi, Tan Ming (2018-11)
Rheological Behavior of High-Volume Fly-Ash Mixtures Containing Micro-Silica for Digital Construction Application - Panda Biranchi, Tay Yi, Paul Suvash, Tan Ming (2018-05)
Current Challenges and Future Potential of 3D Concrete Printing - Perrot Arnaud, Jacquet Yohan, Rangeard Damien, Courteille Eric et al. (2020-03)
Nailing of Layers:
A Promising Way to Reinforce Concrete 3D Printing Structures - Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques - Putten Jolien, Snoeck Didier, Coensel R., Schutter Geert et al. (2020-12)
Early-Age Shrinkage Phenomena of 3D Printed Cementitious Materials with Superabsorbent Polymers - Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
3D Printable Concrete:
Mixture-Design and Test-Methods - Rehman Atta, Kim Jung-Hoon (2021-07)
3D Concrete Printing:
A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics - Salet Theo, Ahmed Zeeshan, Bos Freek, Laagland Hans (2018-05)
Design of a 3D Printed Concrete Bridge by Testing - Sedghi Reza, Zafar Muhammad, Hojati Maryam (2023-10)
Exploring Fresh and Hardened Properties of Sustainable 3D Printed Lightweight Cementitious Mixtures - Tay Yi, Qian Ye, Tan Ming (2019-05)
Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test - Zafar Muhammad, Bakhshi Amir, Hojati Maryam (2023-10)
Printability and Shape Fidelity Evaluation of Self-Reinforced Engineered Cementitious Composites - Zat Tuani, Schuster Sílvio, Schmitt Duarte Ester, Freitas Daudt Natália et al. (2025-03)
Rheological Properties of High-Performance Concrete Reinforced with Microfibers and Their Effects on 3D Printing Process
BibTeX
@article{zafa_zafa_hoja.2025.Et3PoECCwICfRCiAR,
author = "Tayyab Zafar and Muhammad Saeed Zafar and Maryam Hojati",
title = "Exploring the 3D Printability of Engineered Cementitious Composites with Internal Curing for Resilient Construction in Arid Regions",
doi = "10.3390/ma18143327",
year = "2025",
journal = "Materials",
volume = "18",
number = "14",
pages = "3327",
}
Formatted Citation
T. Zafar, M. S. Zafar and M. Hojati, “Exploring the 3D Printability of Engineered Cementitious Composites with Internal Curing for Resilient Construction in Arid Regions”, Materials, vol. 18, no. 14, p. 3327, 2025, doi: 10.3390/ma18143327.
Zafar, Tayyab, Muhammad Saeed Zafar, and Maryam Hojati. “Exploring the 3D Printability of Engineered Cementitious Composites with Internal Curing for Resilient Construction in Arid Regions”. Materials 18, no. 14 (2025): 3327. https://doi.org/10.3390/ma18143327.