Mechanical Enhancement for EMW-Absorbing Cementitious Material Using 3D Concrete Printing (2021-05)¶
, , , ,
Journal Article - Journal of Building Engineering, Vol. 41
Abstract
Ordinary electromagnetic wave-absorbing concrete can substantially reduce electronic pollution but usually has limited EMW-reflecting capacity. Thus, EMW-absorbing macrostructure can be applied to further reduce EMWs. These concrete macrostructures could be manufactured using 3D cementitious printing technology as conventional casting methodology is not sufficient in standard manufacturing. However, many printed concretes may demonstrate inferior mechanical performance to that of the cast counterpart due to improper fabrication procedure. Therefore, the present study demonstrates the mechanical capacity improvement of EMW-absorbing concrete through optimizing chemical additive and printing parameters. EMW-absorbing experiment confirms that 3D printing technology using enhancement methodology enhances the microwave absorption. Mechanical results show that the hydration velocity as well as the hydration degree acceleration for the printed sample are improved. The compressive strength of the printed samples is improved by 9% and 40% at 28 days and 7 days, respectively. The mercury intrusion porosimetry test indicates that 3D printing provides a favorable squeezing effect to decrease concrete porosity, reducing the void fraction from 17.47% to 11.13% and narrowing the medium void size distribution from 48 nm to 22 nm. To this end, the proposed enhancement methods improve the mechanical and EM absorbing behavior of 3D-printed elements.
¶
18 References
- Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2020-10)
Development of 3D Printable Ultra-High-Performance Fiber-Reinforced Concrete for Digital Construction - Bos Freek, Ahmed Zeeshan, Wolfs Robert, Salet Theo (2017-06)
3D Printing Concrete with Reinforcement - Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
Additive Manufacturing of Concrete in Construction:
Potentials and Challenges of 3D Concrete Printing - Chen Yu, Figueiredo Stefan, Yalçınkaya Çağlar, Çopuroğlu Oğuzhan et al. (2019-04)
The Effect of Viscosity-Modifying Admixture on the Extrudability of Limestone and Calcined-Clay-Based Cementitious Material for Extrusion-Based 3D Concrete Printing - Kruger Jacques, Zeranka Stephan, Zijl Gideon (2019-07)
3D Concrete Printing:
A Lower-Bound Analytical Model for Buildability-Performance-Quantification - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Mix-Design and Fresh Properties for High-Performance Printing Concrete - Long Wujian, Tao Jie-Lin, Lin Can, Gu Yucun et al. (2019-08)
Rheology and Buildability of Sustainable Cement-Based Composites Containing Micro-Crystalline Cellulose for 3D Printing - Ma Guowei, Li Zhijian, Wang Li (2017-12)
Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing - Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing - Ma Guowei, Sun Junbo, Wang Li, Aslani Farhad et al. (2018-09)
Electromagnetic and Microwave-Absorbing Properties of Cementitious Composite for 3D Printing Containing Waste Copper Solids - Ma Guowei, Zhang Junfei, Wang Li, Li Zhijian et al. (2018-06)
Mechanical Characterization of 3D Printed Anisotropic Cementitious Material by the Electromechanical Transducer - Nerella Venkatesh, Näther Mathias, Iqbal Arsalan, Butler Marko et al. (2018-09)
In-Line Quantification of Extrudability of Cementitious Materials for Digital Construction - Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material - Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques - Qian Ye, Schutter Geert (2018-06)
Enhancing Thixotropy of Fresh Cement-Pastes with Nano-Clay in Presence of Polycarboxylate-Ether Superplasticizer (PCE) - Salet Theo, Bos Freek, Wolfs Robert, Ahmed Zeeshan (2017-06)
3D Concrete Printing:
A Structural Engineering Perspective - Wu Peng, Wang Jun, Wang Xiangyu (2016-04)
A Critical Review of the Use of 3D Printing in the Construction Industry - Zhang Yu, Zhang Yunsheng, Yang Lin, Liu Guojian et al. (2021-02)
Hardened Properties and Durability of Large-Scale 3D Printed Cement-Based Materials
16 Citations
- Zhang Xin, Xu Xinglong, Liu Xianda, Sun Junbo et al. (2026-01)
Enhancing Electromagnetic Wave Absorption in 3D-Printed Concrete with Superabsorbent Polymers for High Performance - Ducoulombier Nicolas, Bono Victor, Kachkouch Fatima, Jacquet Yohan et al. (2025-01)
From Laboratory to Practice - Zhao Hongyu, Sun Junbo, Wang Xiangyu, Wang Yufei et al. (2024-12)
Real-Time and High-Accuracy Defect Monitoring for 3D Concrete Printing Using Transformer Networks - Zhao Hongyu, Jassmi Hamad, Liu Xianda, Wang Yufei et al. (2024-12)
Artificial Intelligence-Based Microcracks Research in 3D Printing Concrete - Skibicki Szymon, Dvořák Richard, Pazdera Luboš, Topolář Libor et al. (2024-11)
Anisotropic Mechanical Properties of 3D Printed Mortar Determined by Standard Flexural and Compression-Test and Acoustic Emission - Wang Bolin, Yang Min, Liu Shilong, Liu Xianda et al. (2024-10)
Research on Mechanical Properties of a 3D Concrete Printing Component-Optimized Path by Multi-Modal Analysis - Zhao Hongyu, Wang Yufei, Liu Xianda, Wang Xiangyu et al. (2024-08)
Review on Solid Wastes Incorporated Cementitious Material Using 3D Concrete Printing-Technology - Zhao Hongyu, Wang Xiangyu, Sun Junbo, Wang Yufei et al. (2024-04)
Artificial Intelligence Powered Real-Time Quality Monitoring for Additive Manufacturing in Construction - Wang Xiaonan, Li Wengui, Guo Yipu, Kashani Alireza et al. (2024-02)
Concrete 3D Printing Technology in Sustainable Construction:
A Review on Raw Materials, Concrete Types and Performances - Tang Weichen, Sun Junbo, Wang Yufei, Chen Zhaohui et al. (2024-02)
Electromagnetic Absorption Properties of 3D Printed Fiber-Oriented Composites Under Different Paths - Zhu Binrong, Wang Yufei, Sun Junbo, Wei Yang et al. (2023-10)
An Experimental Study on the Influence of Waste-Rubber-Particles on the Compressive, Flexural and Impact Properties of 3D Printable Sustainable Cementitious Composites - Singh Narinder, Colangelo Francesco, Farina Ilenia (2023-06)
Sustainable Non-Conventional Concrete 3D Printing:
A Review - Wang Bolin, Yao Xiaofei, Yang Min, Zhang Runhong et al. (2022-04)
Mechanical Performance of 3D Printed Concrete in Steam-Curing Conditions - Wang Bolin, Zhai Mingang, Yao Xiaofei, Wu Qing et al. (2022-03)
Printable and Mechanical Performance of 3D Printed Concrete Employing Multiple Industrial Wastes - Yalçınkaya Çağlar (2022-03)
Influence of Hydroxypropyl Methylcellulose Dosage on the Mechanical Properties of 3D Printable Mortars with and without Fiber-Reinforcement - Dey Dhrutiman, Srinivas Dodda, Panda Biranchi, Suraneni Prannoy et al. (2022-02)
Use of Industrial Waste-Materials for 3D Printing of Sustainable Concrete:
A Review
BibTeX
@article{sun_huan_asla_wang.2021.MEfEACMU3CP,
author = "Junbo Sun and Yimiao Huang and Farhad Aslani and Xiangyu Wang and Guowei Ma",
title = "Mechanical Enhancement for EMW-Absorbing Cementitious Material Using 3D Concrete Printing",
doi = "10.1016/j.jobe.2021.102763",
year = "2021",
journal = "Journal of Building Engineering",
volume = "41",
}
Formatted Citation
J. Sun, Y. Huang, F. Aslani, X. Wang and G. Ma, “Mechanical Enhancement for EMW-Absorbing Cementitious Material Using 3D Concrete Printing”, Journal of Building Engineering, vol. 41, 2021, doi: 10.1016/j.jobe.2021.102763.
Sun, Junbo, Yimiao Huang, Farhad Aslani, Xiangyu Wang, and Guowei Ma. “Mechanical Enhancement for EMW-Absorbing Cementitious Material Using 3D Concrete Printing”. Journal of Building Engineering 41 (2021). https://doi.org/10.1016/j.jobe.2021.102763.