Skip to content

Comparison of Reinforcement-Fibers in 3D Printing Mortars Using Multi-Criteria Analysis (2024-08)

10.1007/s00170-024-14126-1

 Alonso-Cañon Sara,  Blanco-Fernandez Elena,  Castro-Fresno Daniel,  Yoris-Nobile Adrian,  Castañon-Jano Laura
Journal Article - The International Journal of Advanced Manufacturing Technology

Abstract

3D concrete printing (3DCP) has developed rapidly in recent years, with a relatively high amount of mortars emerging apt for 3D printing. Some of these mortars include fibers to improve their strength. Despite mechanical properties having been quite well studied, there still is missing information on cost, printability, and environmental impacts. The objective of this research is to select the best mortars with fibers considering four criteria: printability, mechanical strength, and economic and environmental impact applying a multi-criteria decision-making analysis (MCDMA). Seven types of fibers with different dosages were assessed in the reinforced mortars: zylon, aramid, carbon, glass, cellulose, textile, and polypropylene. AHP method and equal weights were used as ponderation techniques of the criteria while WASPAS and TOPSIS methods were used to calculate the rankings of the MCDMA. Printability was measured through rheological tests using a rotational rheometer, mechanical strength through flexural tests at 28 days based on EN 196–1, and cost just considering the materials and environmental impact through a life cycle assessment (LCA). The results showed that 13-mm-long glass fibers with a content of 0.1% were the best alternative, closely followed by the mortar with 6 mm cellulose fibers with a content of 0.05%. For the best option (G13;0.1), the increments in the printability index, flexural strength, cost, and LCA were − 14.37%, 16.70%, 5.88%, and 2.86%, respectively. It can also be concluded that high elastic modulus fibers (zylon and aramid), although able to increase significantly the flexural strength (up to 30% in the case of zylon), prevent them from being an optimal solution due to their high cost.

28 References

  1. Abdalla Hadeer, Fattah Kazi, Abdallah Mohamed, Tamimi Adil (2021-10)
    Environmental Footprint and Economics of a Full-Scale 3D Printed House
  2. Alhumayani Hashem, Gomaa Mohamed, Soebarto Veronica, Jabi Wassim (2020-06)
    Environmental Assessment of Large-Scale 3D Printing in Construction:
    A Comparative Study between Cob and Concrete
  3. Alonso-Cañon Sara, Blanco-Fernandez Elena, Castro-Fresno Daniel, Yoris-Nobile Adrian et al. (2022-11)
    Reinforcements in 3D Printing Concrete Structures
  4. Al-Qutaifi Sarah, Nazari Ali, Bagheri Ali (2018-07)
    Mechanical Properties of Layered Geopolymer Structures Applicable in Concrete 3D Printing
  5. Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2020-10)
    Development of 3D Printable Ultra-High-Performance Fiber-Reinforced Concrete for Digital Construction
  6. Chen Mingxu, Li Laibo, Wang Jiaao, Huang Yongbo et al. (2019-10)
    Rheological Parameters and Building Time of 3D Printing Sulphoaluminate-Cement-Paste Modified by Retarder and Diatomite
  7. Chen Mingxu, Liu Bo, Li Laibo, Cao Lidong et al. (2020-01)
    Rheological Parameters, Thixotropy and Creep of 3D Printed Calcium-Sulfoaluminate-Cement Composites Modified by Bentonite
  8. Chu Shaohua, Li Leo, Kwan Albert (2020-09)
    Development of Extrudable High-Strength Fiber-Reinforced Concrete Incorporating Nano-Calcium-Carbonate
  9. Hambach Manuel, Möller Hendrik, Neumann Thomas, Volkmer Dirk (2016-08)
    Portland-Cement-Paste with Aligned Carbon-Fibers Exhibiting Exceptionally High Flexural Strength (>100 MPa)
  10. Hambach Manuel, Volkmer Dirk (2017-02)
    Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste
  11. Han Yilong, Yang Zhihan, Ding Tao, Xiao Jianzhuang (2020-08)
    Environmental and Economic Assessment on 3D Printed Buildings with Recycled Concrete
  12. Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2022-08)
    Rheometry for Concrete 3D Printing:
    A Review and an Experimental Comparison
  13. Jo Jun, Jo Byung, Cho Woohyun, Kim Jung-Hoon (2020-03)
    Development of a 3D Printer for Concrete Structures:
    Laboratory Testing of Cementitious Materials
  14. Kreiger Eric, Kreiger Megan, Case Michael (2019-04)
    Development of the Construction Processes for Reinforced Additively Constructed Concrete
  15. Liu Xiongfei, Li Jixiang, Li Qi, Hou Gunayu (2022-11)
    Mechanical Performance Optimization in Spray-Based Three-Dimensional-Printed Mortar Using Carbon-Fiber
  16. Mohammad Malek, Masad Eyad, Ghamdi Sami (2020-12)
    3D Concrete Printing Sustainability:
    A Comparative Life Cycle Assessment of Four Construction Method Scenarios
  17. Nematollahi Behzad, Vijay Praful, Sanjayan Jay, Nazari Ali et al. (2018-11)
    Effect of Polypropylene Fiber Addition on Properties of Geopolymers Made by 3D Printing for Digital Construction
  18. Nerella Venkatesh, Krause Martin, Mechtcherine Viktor (2019-11)
    Direct Printing-Test for Buildability of 3D Printable Concrete Considering Economic Viability
  19. Otto Jens, Kortmann Jan, Krause Martin (2020-03)
    Cost Calculation of Concrete 3D Printing
  20. Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
    Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material
  21. Pham Luong, Tran Jonathan, Sanjayan Jay (2020-04)
    Steel-Fiber-Reinforced 3D Printed Concrete:
    Influence of Fiber Sizes on Mechanical Performance
  22. Pons-Valladares Oriol, Casanovas-Rubio Maria, Armengou Jaume, Fuente Albert (2023-02)
    Approach for Sustainability-Assessment for Footbridge Construction Technologies:
    Application to the First World D-Shape 3D Printed Fiber-Reinforced Mortar Footbridge in Madrid
  23. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  24. Soltan Daniel, Li Victor (2018-03)
    A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing
  25. Soto Borja, Agustí-Juan Isolda, Hunhevicz Jens, Joss Samuel et al. (2018-05)
    Productivity of Digital Fabrication in Construction:
    Cost and Time-Analysis of a Robotically Built Wall
  26. Wang Chaofan, Chen Bing, Vo Thanh, Rezania Mohammad (2023-07)
    Mechanical Anisotropy, Rheology and Carbon Footprint of 3D Printable Concrete:
    A Review
  27. Weng Yiwei, Li Mingyang, Ruan Shaoqin, Wong Teck et al. (2020-03)
    Comparative Economic, Environmental and Productivity-Assessment of a Concrete Bathroom Unit Fabricated Through 3D Printing and a Pre-Cast Approach
  28. Yoris-Nobile Adrian, Lizasoain-Arteaga Esther, Slebi-Acevedo Carlos, Blanco-Fernandez Elena et al. (2022-07)
    Life-Cycle-Assessment and Multi-Criteria Decision-Making-Analysis to Determine the Performance of 3D Printed Cement Mortars and Geopolymers

4 Citations

  1. Sedighi Saeed, Rahai Alireza, Moodi Faramarz (2025-10)
    Multi-Criteria Optimization for Sustainable Concrete Mix Considering the Synergistic Effect of Recycled Steel Fiber and LC3 Concrete
  2. Varghese Renny, Rangel Bárbara, Maia Lino (2025-10)
    Strength, Structure, and Sustainability in 3D-Printed Concrete Using Different Types of Fiber Reinforcements
  3. Philip Nivin, Jędrzejewska Agnieszka, Mathew Ashitta, Uthuppan Susan (2025-09)
    Steel Fiber Reinforcement for Improved Structural Performance and Durability of 3D Printed Mortar in Marine Environments
  4. Alonso-Cañon Sara, Blanco-Fernandez Elena, Cuesta-Astorga Eva, Indacoechea-Vega Irune et al. (2025-09)
    Selection of the Best 3D Printing High-Performance Mortars Using Multi-Criteria Analysis

BibTeX
@article{alon_blan_cast_yori.2024.CoRFi3PMUMCA,
  author            = "Sara Alonso-Cañon and Elena Blanco-Fernandez and Daniel Castro-Fresno and Adrian Isidro Yoris-Nobile and Laura Castañon-Jano",
  title             = "Comparison of Reinforcement-Fibers in 3D Printing Mortars Using Multi-Criteria Analysis",
  doi               = "10.1007/s00170-024-14126-1",
  year              = "2024",
  journal           = "The International Journal of Advanced Manufacturing Technology",
}
Formatted Citation

S. Alonso-Cañon, E. Blanco-Fernandez, D. Castro-Fresno, A. I. Yoris-Nobile and L. Castañon-Jano, “Comparison of Reinforcement-Fibers in 3D Printing Mortars Using Multi-Criteria Analysis”, The International Journal of Advanced Manufacturing Technology, 2024, doi: 10.1007/s00170-024-14126-1.

Alonso-Cañon, Sara, Elena Blanco-Fernandez, Daniel Castro-Fresno, Adrian Isidro Yoris-Nobile, and Laura Castañon-Jano. “Comparison of Reinforcement-Fibers in 3D Printing Mortars Using Multi-Criteria Analysis”. The International Journal of Advanced Manufacturing Technology, 2024. https://doi.org/10.1007/s00170-024-14126-1.