Effect of Polypropylene-Fibers on the Mechanical Properties of Extrudable Cementitious Material (2020-07)¶
Suntharalingam Thadshajini, , , Hackney Phil,
Contribution - Proceedings of the 2nd RILEM International Conference on Concrete and Digital Fabrication, pp. 516-526
Abstract
3D Concrete Printing (3DCP) has aa potentiality to produce complex, geometries and can modify the details rapidly using a printer integrated with a pump and nozzle. From the earlier studies on 3DCP, it is distinguished that the rheological behaviour of the material, printing direction, and printing time may have significant effects on the overall structural behaviour of the printed structure. The layered concrete may create weak joints in the specimens and reduce the load bearing capacity in terms of compressive, tensile and flexural strength that requires stress transfer across or along these joints The present study focuses on the examination of the effect of adding polypropylene (PP) fibres on the failure behaviour of print mortar on printed concrete, on different print directions. The Silica Fume (SF) based control mix was used in the analysis with fibre addition in different mass fraction of binder ranging from 0.5% to 3.0%. Those mixes were designated after the detailed fresh property analysis and control cementitious specimens without fibre inclusion were also printed for comparison. The specimens were collected in different orientations from manual extruded concrete blocks and tested for mechanical properties. For the materials tested, it is found that the mechanical properties such as compressive and flexural strength of extruded samples are governed by its printing directions. The mixes with 1.0% and 0.5% PP fibre addition exhibit the better performance in terms offlexural strength and 0.5% PP mix can be considered as the optimum fibre content with respect to the compressive strength
¶
17 References
- Bos Freek, Bosco Emanuela, Salet Theo (2018-11)
Ductility of 3D Printed Concrete Reinforced with Short Straight Steel-Fibers - Feng Peng, Meng Xinmiao, Chen Jian-Fei, Ye Lieping (2015-06)
Mechanical Properties of Structures 3D Printed with Cementitious Powders - Hambach Manuel, Volkmer Dirk (2017-02)
Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste - Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2019-09)
Predication of Strength-Based Failure in Extrusion-Based 3D Concrete Printing - Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
Cementitious Materials for Construction-Scale 3D Printing:
Laboratory Testing of Fresh Printing Mixture - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Mix-Design and Fresh Properties for High-Performance Printing Concrete - Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
Developments in Construction-Scale Additive Manufacturing Processes - Malaeb Zeina, Sakka Fatima, Hamzeh Farook (2019-02)
3D Concrete Printing:
Machine Design, Mix Proportioning, and Mix Comparison Between Different Machine Setups - Nematollahi Behzad, Vijay Praful, Sanjayan Jay, Nazari Ali et al. (2018-11)
Effect of Polypropylene Fiber Addition on Properties of Geopolymers Made by 3D Printing for Digital Construction - Nematollahi Behzad, Xia Ming, Sanjayan Jay (2017-07)
Current Progress of 3D Concrete Printing Technologies - Nerella Venkatesh, Hempel Simone, Mechtcherine Viktor (2019-02)
Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D Printing - Panda Biranchi, Paul Suvash, Tan Ming (2017-07)
Anisotropic Mechanical Performance of 3D Printed Fiber-Reinforced Sustainable Construction-Material - Panda Biranchi, Tan Ming (2018-03)
Experimental Study on Mix Proportion and Fresh Properties of Fly-Ash-Based Geopolymer for 3D Concrete Printing - Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction - Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques - Sanjayan Jay, Nematollahi Behzad, Xia Ming, Marchment Taylor (2018-04)
Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete - Suntharalingam Thadshajini, Nagaratnam Brabha, Poologanathan Keerthan, Hackney Phil et al. (2019-12)
Effect of Polypropylene-Fibers on the Workability Parameters of Extrudable Cementitious Materials
12 Citations
- Varghese Renny, Rangel Bárbara, Maia Lino (2025-10)
Strength, Structure, and Sustainability in 3D-Printed Concrete Using Different Types of Fiber Reinforcements - Hassan Amer, Alomayri Thamer, Noaman Mohammed, Zhang Chunwei (2025-01)
3D Printed Concrete for Sustainable Construction:
A Review of Mechanical Properties and Environmental Impact - Khan Mirza, Ahmed Aayzaz, Ali Tariq, Qureshi Muhammad et al. (2024-12)
Comprehensive Review of 3D Printed Concrete, Life Cycle Assessment, AI and ML Models:
Materials, Engineered Properties and Techniques for Additive Manufacturing - Gao Jianhao, Wang Chaofeng, Li Jiaqi, Chu S. (2024-09)
Data-Driven Rheological-Model for 3D Printable Concrete - Rehman Saif, Riaz Raja, Usman Muhammad, Kim In-Ho (2024-08)
Augmented Data-Driven Approach Towards 3D Printed Concrete Mix Prediction - Malik Umair, Riaz Raja, Rehman Saif, Usman Muhammad et al. (2024-07)
Advancing Mix-Design Prediction in 3D Printed Concrete:
Predicting Anisotropic Compressive Strength and Slump-Flow - Şahin Hatice, Mardani Ali, Mardani Naz (2024-07)
Performance Requirements and Optimum Mix Proportion of High-Volume Fly-Ash 3D Printable Concrete - Ali Ammar, Riaz Raja, Malik Umair, Abbas Syed et al. (2023-06)
Machine-Learning-Based Predictive-Model for Tensile and Flexural Strength of 3D Printed Concrete - Basha Shaik, Rehman Atta, Aziz Md, Kim Jung-Hoon (2023-02)
Cement Composites with Carbon-Based Nanomaterials for 3D Concrete Printing Applications:
A Review - Lee Hojae, Seo Eun-A, Kim Won-Woo, Moon Jae-Heum (2021-10)
Experimental Study on Time-Dependent Changes in Rheological Properties and Flow-Rate of 3D Concrete Printing Materials - Suntharalingam Thadshajini, Upasiri Irindu, Gatheeshgar Perampalam, Poologanathan Keerthan et al. (2021-07)
Fire-Resistance of 3D Printed Concrete Composite Wall Panels Exposed to Various Fire Scenarios - Rehman Atta, Kim Jung-Hoon (2021-07)
3D Concrete Printing:
A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics
BibTeX
@inproceedings{sunt_naga_pool_hack.2020.EoPFotMPoECM,
author = "Thadshajini Suntharalingam and Brabha Nagaratnam and Keerthan Poologanathan and Phil Hackney and Jeffri Ramli",
title = "Effect of Polypropylene-Fibers on the Mechanical Properties of Extrudable Cementitious Material",
doi = "10.1007/978-3-030-49916-7_53",
year = "2020",
volume = "28",
pages = "516--526",
booktitle = "Proceedings of the 2nd RILEM International Conference on Concrete and Digital Fabrication: Digital Concrete 2020",
editor = "Freek Paul Bos and Sandra Simaria de Oliveira Lucas and Robert Johannes Maria Wolfs and Theo A. M. Salet",
}
Formatted Citation
T. Suntharalingam, B. Nagaratnam, K. Poologanathan, P. Hackney and J. Ramli, “Effect of Polypropylene-Fibers on the Mechanical Properties of Extrudable Cementitious Material”, in Proceedings of the 2nd RILEM International Conference on Concrete and Digital Fabrication: Digital Concrete 2020, 2020, vol. 28, pp. 516–526. doi: 10.1007/978-3-030-49916-7_53.
Suntharalingam, Thadshajini, Brabha Nagaratnam, Keerthan Poologanathan, Phil Hackney, and Jeffri Ramli. “Effect of Polypropylene-Fibers on the Mechanical Properties of Extrudable Cementitious Material”. In Proceedings of the 2nd RILEM International Conference on Concrete and Digital Fabrication: Digital Concrete 2020, edited by Freek Paul Bos, Sandra Simaria de Oliveira Lucas, Robert Johannes Maria Wolfs, and Theo A. M. Salet, 28:516–26, 2020. https://doi.org/10.1007/978-3-030-49916-7_53.