Skip to content

Flexural Behavior of Printed Concrete Wide Beams with Dispersed Fibers-Reinforced (2023-12)

10.17515/resm2023.19me0925rs

 Pham Thi,  Trinh Duy,  Do Trong,  Huang Jie
Journal Article - Research on Engineering Structures and Materials

Abstract

Thanks to the highlighted advantages of the construction method, including digitalization and automation, sustainable materials, and environmental protection, 3D concrete printing technology has been a hot topic for a few decades. This construction method was initially used in small and non-structural applications and is now being adopted for large-scale structures. This transition requires a lot of research on the structural behavior of structures. Therefore, the study focuses on the behavior of wide beams, which is the primary element in the structure system. Nine wide beams with different glass/steel fiber amounts were printed, and 3-point loading tests were conducted. The failure mode, flexural strength, deflection, and ductility were reported in this study. In this study, the girder web was designed in the style of truss beams, and glass/steel fibers were used. The fibers, including glass and steel fiber, will enhance the beams' flexural strength and ductility. The results showed that (1) The adhesion force between the printed layers ensures the overall working of the wide beams; (2) The failure patterns of glass fiber beams were brittle; glass fibers show insignificant improvement in compressive strength; the flexural capacity was significantly enhanced, and the optimal steel fiber amount is 1.0%. (3) The failure patterns of steel fiber beams were ductile; steel fibers showed light improvement in compressive strength. The steel fiber significantly impacted the flexural strength. The optimum amount of steel fibers was determined to be ranged from 1.0% to 1.5%.

22 References

  1. Ding Tao, Xiao Jianzhuang, Zou Shuai, Yu Jiangtao (2021-03)
    Flexural Properties of 3D Printed Fiber-Reinforced Concrete with Recycled Sand
  2. Ding Tao, Xiao Jianzhuang, Zou Shuai, Zhou Xinji (2020-08)
    Anisotropic Behavior in Bending of 3D Printed Concrete Reinforced with Fibers
  3. Hamidi Fatemeh, Aslani Farhad (2019-05)
    Additive Manufacturing of Cementitious Composites:
    Materials, Methods, Potentials, and Challenge
  4. Han Xiaoyu, Yan Jiachuan, Liu Mingjian, Huo Liang et al. (2021-10)
    Experimental Study on Large-Scale 3D Printed Concrete Walls Under Axial Compression
  5. Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
    A Review of 3D Printed Concrete:
    Performance-Requirements, Testing Measurements and Mix-Design
  6. Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
    Cementitious Materials for Construction-Scale 3D Printing:
    Laboratory Testing of Fresh Printing Mixture
  7. Kothman Ivo, Faber Niels (2016-09)
    How 3D Printing Technology Changes the Rules of the Game:
    Insights from the Construction Sector
  8. Li Zhijian, Wang Li, Ma Guowei, Sanjayan Jay et al. (2020-07)
    Strength and Ductility Enhancement of 3D Printing Structure Reinforced by Embedding Continuous Micro-Cables
  9. Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
    Developments in Construction-Scale Additive Manufacturing Processes
  10. Liu Miao, Zhang Qiyun, Tan Zhendong, Wang Li et al. (2021-01)
    Investigation of Steel-Wire-Mesh-Reinforcement Method for 3D Concrete Printing
  11. Lu Bing, Weng Yiwei, Li Mingyang, Qian Ye et al. (2019-02)
    A Systematical Review of 3D Printable Cementitious Materials
  12. Manikandan Karthick, Wi Kwangwoo, Zhang Xiao, Wang Kejin et al. (2020-03)
    Characterizing Cement Mixtures for Concrete 3D Printing
  13. Mechtcherine Viktor, Nerella Venkatesh, Will Frank, Näther Mathias et al. (2019-08)
    Large-Scale Digital Concrete Construction:
    CONPrint3D Concept for On-Site, Monolithic 3D Printing
  14. Olsson Nils, Shafqat Ali, Arica Emrah, Økland Andreas (2019-05)
    3D Printing Technology in Construction:
    Results from a Survey
  15. Paul Suvash, Zijl Gideon, Tan Ming, Gibson Ian (2018-05)
    A Review of 3D Concrete Printing Systems and Materials Properties:
    Current Status and Future Research Prospects
  16. Pham Thi, Nguyen Thu, Trinh Thanh, Nguyen Anh et al. (2022-08)
    Development of 3D Printers for Concrete Structures:
    Mix Proportion Design Approach and Laboratory Testing
  17. Pham Luong, Tran Jonathan, Sanjayan Jay (2020-04)
    Steel-Fiber-Reinforced 3D Printed Concrete:
    Influence of Fiber Sizes on Mechanical Performance
  18. Rehman Atta, Kim Jung-Hoon (2021-07)
    3D Concrete Printing:
    A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics
  19. Sakin Mehmet, Kiroglu Yusuf (2017-10)
    3D Printing of Buildings:
    Construction of the Sustainable Houses of the Future by BIM
  20. Weng Yiwei, Li Mingyang, Tan Ming, Qian Shunzhi (2018-01)
    Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model
  21. Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
    Large-Scale 3D Printing Concrete Technology:
    Current Status and Future Opportunities
  22. Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
    Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction

0 Citations

BibTeX
@article{pham_trin_do_huan.2023.FBoPCWBwDFR,
  author            = "Thi Loan Pham and Duy Thanh Trinh and Trong Quang Do and Jie Yi Huang",
  title             = "Flexural Behavior of Printed Concrete Wide Beams with Dispersed Fibers-Reinforced",
  doi               = "10.17515/resm2023.19me0925rs",
  year              = "2023",
  journal           = "Research on Engineering Structures and Materials",
}
Formatted Citation

T. L. Pham, D. T. Trinh, T. Q. Do and J. Y. Huang, “Flexural Behavior of Printed Concrete Wide Beams with Dispersed Fibers-Reinforced”, Research on Engineering Structures and Materials, 2023, doi: 10.17515/resm2023.19me0925rs.

Pham, Thi Loan, Duy Thanh Trinh, Trong Quang Do, and Jie Yi Huang. “Flexural Behavior of Printed Concrete Wide Beams with Dispersed Fibers-Reinforced”. Research on Engineering Structures and Materials, 2023. https://doi.org/10.17515/resm2023.19me0925rs.