Properties of 3D Printed Concrete-Geopolymer Hybrids Reinforced with Aramid Roving (2022-09)¶
, , , , Marzec Witold, , , , ,
Journal Article - Materials, Vol. 15, Iss. 17
Abstract
Three-dimensional concrete printing (3DCP) is an innovative technology that can lead to breakthrough modifications of production processes in the construction industry. The paper presents for the first time the possibility of 3D printing concrete-geopolymer hybrids reinforced with aramid roving. Reference concrete samples and concrete-geopolymer hybrids composed of 95% concrete and 5% geopolymer based on fly ash or metakaolin were produced. The properties of the samples without reinforcement and samples with 0.5% (wt.) aramid roving were compared. The frost resistance tests, UV radiation resistance, and thermal conductivity were evaluated for samples that were 3D-printed or produced by the conventional casting method. Compressive strength tests were carried out for each sample exposed to freeze-thaw cycles and UV radiation. It was observed that after the frost resistance test, the samples produced by the 3D printing technology had a minor decrease in strength properties compared to the samples made by casting. Moreover, the thermal conductivity coefficient was higher for concrete-geopolymer hybrids than concrete reinforced with aramid roving.
¶
10 References
- Arunothayan Arun, Nematollahi Behzad, Ranade Ravi, Bong Shin et al. (2021-02)
Fiber-Orientation Effects on Ultra-High-Performance Concrete Formed by 3D Printing - Batikha Mustafa, Jotangia Rahul, Baaj Mohamad, Mousleh Ibrahim (2021-12)
3D Concrete Printing for Sustainable and Economical Construction:
A Comparative Study - Chen Yu, He Shan, Gan Yidong, Çopuroğlu Oğuzhan et al. (2021-11)
A Review of Printing-Strategies, Sustainable Cementitious Materials and Characterization Methods in the Context of Extrusion-Based 3D Concrete Printing - Marczyk Joanna, Ziejewska Celina, Gądek Szymon, Korniejenko Kinga et al. (2021-11)
Hybrid Materials Based on Fly-Ash, Metakaolin, and Cement for 3D Printing - Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
Extrusion-Based Additive Manufacturing with Cement-Based Materials:
Production Steps, Processes, and Their Underlying Physics - Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2019-08)
Mechanical Characterization of 3D Printable Concrete - Rollakanti Chiranjeevi, Prasad C. (2022-04)
Applications, Performance, Challenges and Current Progress of 3D Concrete Printing Technologies as the Future of Sustainable Construction:
A State of the Art Review - Schutter Geert, Lesage Karel, Mechtcherine Viktor, Nerella Venkatesh et al. (2018-08)
Vision of 3D Printing with Concrete:
Technical, Economic and Environmental Potentials - Wolfs Robert, Bos Freek, Salet Theo (2019-03)
Hardened Properties of 3D Printed Concrete:
The Influence of Process Parameters on Inter-Layer Adhesion - Ziejewska Celina, Marczyk Joanna, Korniejenko Kinga, Bednarz Sebastian et al. (2022-04)
3D Printing of Concrete-Geopolymer Hybrids
9 Citations
- Tushar Fazlul, Hasan Mehedi, Hasan Kamrul, Mawa Jannatul et al. (2026-01)
Factors Affecting Flowability and Rheological Behavior of 3D Printed Concrete:
A Comprehensive Review - Crook Thomas, Li Matthew, Buswell Richard, Allinson David (2025-10)
Anisotropic Hygrothermal Properties of 3D Printed Concrete - Bajwa Asad, Samarasinghe Don, Flemmer Claire, Bao Ding (2025-06)
A Systematic Literature Review on the Thermal Behaviour of Building Elements Constructed Through 3D Concrete Printing (3DCP) - Jaji Mustapha, Babafemi Adewumi, Zijl Gideon (2025-05)
Mechanical Performance of Extrusion-Based Two-Part 3D-Printed Geopolymer Concrete:
A Review of Advances in Laboratory and Real-Scale Construction Projects - Becher Anton, Gądek Szymon, Korniejenko Kinga (2025-05)
3D Printing with Geopolymers and Its Applications - Akhrif Iatimad, Oulkhir Fatima, Jai Mostapha, Rihani Nadir et al. (2025-03)
Earth-Based Materials 3D Printing, Extrudability and Buildability Numerical Investigations - Sakhare Vishakha, Najar Mohamed, Deshpande Sachin (2024-12)
Printing Performance of 3D Printed Geopolymer Through Pumpability, Extrudability, Buildability Properties:
A Review - Tarhan Yeşim, Tarhan İsmail, Şahin Remzi (2024-12)
Comprehensive Review of Binder Matrices in 3D Printing Construction:
Rheological Perspectives - Oulkhir Fatima, Akhrif Iatimad, Jai Mostapha (2024-05)
3D Concrete Printing Success:
An Exhaustive Diagnosis and Failure-Modes-Analysis
BibTeX
@article{marc_ziej_korn_ach.2022.Po3PCGHRwAR,
author = "Joanna Marczyk and Celina Ziejewska and Kinga Korniejenko and Michał Łach and Witold Marzec and Mateusz Góra and Paweł Dziura and Andina Sprince and Magdalena Szechyńska-Hebda and Marek Hebda",
title = "Properties of 3D Printed Concrete-Geopolymer Hybrids Reinforced with Aramid Roving",
doi = "10.3390/ma15176132",
year = "2022",
journal = "Materials",
volume = "15",
number = "17",
}
Formatted Citation
J. Marczyk, “Properties of 3D Printed Concrete-Geopolymer Hybrids Reinforced with Aramid Roving”, Materials, vol. 15, no. 17, 2022, doi: 10.3390/ma15176132.
Marczyk, Joanna, Celina Ziejewska, Kinga Korniejenko, Michał Łach, Witold Marzec, Mateusz Góra, Paweł Dziura, Andina Sprince, Magdalena Szechyńska-Hebda, and Marek Hebda. “Properties of 3D Printed Concrete-Geopolymer Hybrids Reinforced with Aramid Roving”. Materials 15, no. 17 (2022). https://doi.org/10.3390/ma15176132.