3D Printable One-Part Alkali-Activated Mortar Derived from Brick-Masonry-Wastes (2024-12)¶
, , , Yıldırım Gürkan,
Journal Article - Case Studies in Construction Materials, No. e04081
Abstract
The exponential growth in demand for housing has resulted in a greater focus on rapid construction methods that adhere to circular economy principles. 3D concrete printing is becoming a powerful tool to find solutions to the common challenges of affordable housing for more people, rapid construction, and the digitalization of the construction industry. However, a coherent synthesis of green and digital initiatives has not yet been achieved. For 3D printable materials, recycling of materials that have reached the end of their service life should also be enabled and supported, in line with circular economy goals that prioritize waste reduction and maximization of resource efficiency. With these objectives in mind, the current study focuses on the development of a one-part 3D printable alkali-activated mortar (3DPM) derived from brick masonry waste (BMW). BMWs were used as the main precursor and filler phase, whereas materials such as ground granulated blast furnace slag, kaolin clay, and limestone have been utilized to enhance/control the mechanical and rheological properties. To investigate the evolution of alkali-activation and the effect of anisotropy, the macromechanical properties of the developed 3DPM were investigated by compressive strength, flexural strength, split tensile, and direct tensile tests. The micromechanical properties were analyzed using X-ray fluorescence spectrometry (XRF), X-ray diffraction (XRD), Fourier transform infrared (FTIR), thermogravimetry (TG), differential scanning calorimetry (DSC), scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM/EDX), and computed tomography (MicroCT) tests. Overall, the results revealed the presence of anisotropy, which can be reduced by optimizing the layer height. Through this optimization, reductions in pore content and distribution, validated by MicroCT, indicated that the disadvantage of the weak interlayer bond zone in stress transfer could be diminished. Micromechanical analysis showed that the gel formation responsible for the strength was the calcium-based gel structures. Considering these findings, it is believed that the BMW-based 3DPM can be an important alternative for the digitalization of the construction industry and its transition to a circular economy.
¶
22 References
- Alghamdi Hussam, Nair Sooraj, Neithalath Narayanan (2019-02)
Insights into Material-Design, Extrusion Rheology, and Properties of 3D Printable Alkali-Activated Fly-Ash-Based Binders - Bianchi Iacopo, Volpe Stelladriana, Fiorito Francesco, Forcellese Archimede et al. (2024-01)
Life Cycle Assessment of Building Envelopes Manufactured Through Different 3D Printing Technologies - Bong Shin, Nematollahi Behzad, Nazari Ali, Xia Ming et al. (2019-03)
Method of Optimization for Ambient Temperature Cured Sustainable Geopolymers for 3D Printing Construction Applications - Bong Shin, Xia Ming, Nematollahi Behzad, Shi Caijun (2021-04)
Ambient Temperature Cured ‘Just-Add-Water’ Geopolymer for 3D Concrete Printing Applications - Chougan Mehdi, Ghaffar Seyed, Jahanzat Mohammad, Albar Abdulrahman et al. (2020-04)
The Influence of Nano-Additives in Strengthening Mechanical Performance of 3D Printed Multi-Binder Geopolymer Composites - Demiral Nazim, Ozkan Ekinci Mehmet, Şahin Oğuzhan, İlcan Hüseyin et al. (2022-10)
Mechanical Anisotropy Evaluation and Bonding Properties of 3D Printable Construction and Demolition Waste-Based Geopolymer Mortars - Dey Dhrutiman, Srinivas Dodda, Panda Biranchi, Suraneni Prannoy et al. (2022-02)
Use of Industrial Waste-Materials for 3D Printing of Sustainable Concrete:
A Review - Ding Tao, Xiao Jianzhuang, Zou Shuai, Zhou Xinji (2020-08)
Anisotropic Behavior in Bending of 3D Printed Concrete Reinforced with Fibers - Guo Xiaolu, Yang Junyi, Xiong Guiyan (2020-09)
Influence of Supplementary Cementitious Materials on Rheological Properties of 3D Printed Fly-Ash-Based Geopolymer - İlcan Hüseyin, Şahin Oğuzhan, Kul Anil, Ozcelikci Emircan et al. (2022-12)
Rheological Property and Extrudability Performance-Assessment of Construction and Demolition Waste-Based Geopolymer Mortars with Varied Testing Protocols - İlcan Hüseyin, Şahin Oğuzhan, Kul Anil, Yıldırım Gürkan et al. (2022-03)
Rheological Properties and Compressive Strength of Construction and Demolition Waste-Based Geopolymer Mortars for 3D Printing - Long Wujian, Lin Can, Tao Jie-Lin, Ye Taohua et al. (2021-02)
Printability and Particle-Packing of 3D Printable Limestone-Calcined-Clay-Cement Composites - Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing - Mir Namra, Khan Shoukat, Kul Anil, Şahin Oğuzhan et al. (2022-08)
Life Cycle Assessment of Construction and Demolition Waste-Based Geopolymers Suited for Use in 3D Additive Manufacturing - Panda Biranchi, Bhagath Singh Gangapatnam, Unluer Cise, Tan Ming (2019-02)
Synthesis and Characterization of One-Part Geopolymers for Extrusion-Based 3D Concrete Printing - Panda Biranchi, Paul Suvash, Lim Jian, Tay Yi et al. (2017-08)
Additive Manufacturing of Geopolymer for Sustainable Built Environment - Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing - Panda Biranchi, Unluer Cise, Tan Ming (2019-08)
Extrusion and Rheology Characterization of Geopolymer Nanocomposites Used in 3D Printing - Şahin Oğuzhan, İlcan Hüseyin, Ateşli Anıl, Kul Anil et al. (2021-05)
Construction and Demolition Waste-Based Geopolymers Suited for Use in 3D Additive Manufacturing - Xiao Jianzhuang, Liu Haoran, Ding Tao (2020-11)
Finite-Element-Analysis on the Anisotropic Behavior of 3D Printed Concrete under Compression and Flexure - Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
Mix-Design Concepts for 3D Printable Concrete:
A Review - Zhang Jingchuan, Wang Jialiang, Dong Sufen, Yu Xun et al. (2019-07)
A Review of the Current Progress and Application of 3D Printed Concrete
2 Citations
- Kul Anil, Kocaer Öznur (2025-10)
Parametric Analysis of Design and Operational Parameters in 3D Concrete Printing of Wall Elements - İlcan Hüseyin, Külak Adnan, Şahin Oğuzhan, Aldemir Alper et al. (2025-04)
Reinforcement and Modular System for 3DCP Geopolymer Structures Using Construction and Demolition Waste
BibTeX
@article{kul_koca_alde_yld.2024.3POPAAMDfBMW,
author = "Anil Kul and Öznur Kocaer and Alper Aldemir and Gürkan Yıldırım and Sandra Simaria de Oliveira Lucas",
title = "3D Printable One-Part Alkali-Activated Mortar Derived from Brick-Masonry-Wastes",
doi = "10.1016/j.cscm.2024.e04081",
year = "2024",
journal = "Case Studies in Construction Materials",
pages = "e04081",
}
Formatted Citation
A. Kul, Ö. Kocaer, A. Aldemir, G. Yıldırım and S. S. de Oliveira Lucas, “3D Printable One-Part Alkali-Activated Mortar Derived from Brick-Masonry-Wastes”, Case Studies in Construction Materials, p. e04081, 2024, doi: 10.1016/j.cscm.2024.e04081.
Kul, Anil, Öznur Kocaer, Alper Aldemir, Gürkan Yıldırım, and Sandra Simaria de Oliveira Lucas. “3D Printable One-Part Alkali-Activated Mortar Derived from Brick-Masonry-Wastes”. Case Studies in Construction Materials, 2024, e04081. https://doi.org/10.1016/j.cscm.2024.e04081.