Study on the Ionic Transport Properties of 3D Printed Concrete (2024-04)¶
Huang Tao, Peng Zhongqi, Wang Mengge, Feng Shuang
Journal Article - Buildings, Vol. 14, Iss. 5, No. 1216
Abstract
Three-dimensional printed concrete (3DPC) is an anisotropic heterogeneous material composed of a concrete matrix and the interfaces between layers and filaments that form during printing. The overall ion transport properties can be characterized by the equivalent diffusion coefficient. This paper first establishes a theoretical model to calculate the equivalent diffusion coefficient of 3DPC. Verification through numerical calculations shows that this theoretical model is highly precise. Based on this, the model was used to analyze the effects of dimensionless interface parameters on the equivalent diffusion coefficients in different directions of 3DPC. Finally, the dynamic ionic transport properties of 3DPC were investigated through finite element numerical simulation. The results of the dynamic study indicate that interfaces have a significant impact on the ion distribution and its evolution within 3DPC. The product of the interface diffusion coefficient and interface size can represent the ionic transport capacity of an interface. The stronger the ionic transport capacity of an interface, the higher the ion concentration at that interface. Due to the “drainage” effect of lateral interfaces, the ion concentration in the middle of 3DPC with a smaller equivalent diffusion coefficient is higher than that in 3DPC with a larger equivalent diffusion coefficient.
¶
23 References
- Anleu Paula, Wangler Timothy, Nerella Venkatesh, Mechtcherine Viktor et al. (2023-03)
Using Micro-XRF to Characterize Chloride-Ingress Through Cold Joints in 3D Printed Concrete - Bos Freek, Ahmed Zeeshan, Jutinov Evgeniy, Salet Theo (2017-11)
Experimental Exploration of Metal-Cable as Reinforcement in 3D Printed Concrete - Ding Tao, Xiao Jianzhuang, Mechtcherine Viktor (2023-05)
Microstructure and Mechanical Properties of Inter-Layer Regions in Extrusion-Based 3D Printed Concrete:
A Critical Review - Han Nv, Xiao Jianzhuang, Zhang Lihai, Peng Yu (2022-06)
A Micro-Scale-Based Numerical Model for Investigating Hygro-Thermo-Mechanical Behavior of 3D Printed Concrete at Elevated Temperatures - Malan Jean, Rooyen Algurnon, Zijl Gideon (2021-12)
Chloride-Induced Corrosion and Carbonation in 3D Printed Concrete - Marchment Taylor, Sanjayan Jay (2019-10)
Mesh Reinforcing Method for 3D Concrete Printing - Mechtcherine Viktor, Grafe Jasmin, Nerella Venkatesh, Spaniol Erik et al. (2018-05)
3D Printed Steel-Reinforcement for Digital Concrete Construction:
Manufacture, Mechanical Properties and Bond Behavior - Nedjar Boumediene (2021-07)
On a Geometrically Non-Linear Incremental Formulation for the Modeling of 3D Concrete Printing - Nedjar Boumediene (2021-09)
Incremental Viscoelasticity at Finite Strains for the Modelling of 3D Concrete Printing - Nodehi Mehrab, Aguayo Federico, Nodehi Shahab, Gholampour Aliakbar et al. (2022-07)
Durability Properties of 3D Printed Concrete - Özalp Fatih, Yılmaz Halit (2020-03)
Fresh and Hardened Properties of 3D High-Strength Printing Concrete and Its Recent Applications - Putten Jolien, Volder Melissa, Heede Philip, Deprez Maxim et al. (2022-03)
Transport Properties of 3D Printed Cementitious Materials with Prolonged Time-Gap Between Successive Layers - Putten Jolien, Volder Melissa, Heede Philip, Schutter Geert et al. (2020-07)
3D Printing of Concrete:
The Influence on Chloride Penetration - Rodriguez Fabian, Lopez Cristian, Wang Yu, Olek Jan et al. (2022-06)
Evaluation of Durability of 3D Printed Cementitious Materials for Potential Applications in Structures Exposed to Marine Environments - Shakor Pshtiwan, Gowripalan Nadarajah, Rasouli Habib (2021-03)
Experimental and Numerical Analysis of 3D Printed Cement Mortar Specimens Using Inkjet 3DP - Sun Xiaoyan, Zhou Jiawei, Wang Qun, Shi Jiangpeng et al. (2021-11)
PVA-Fiber-Reinforced High-Strength Cementitious Composite for 3D Printing:
Mechanical Properties and Durability - Surehali Sahil, Tripathi Avinaya, Nimbalkar Atharwa, Neithalath Narayanan (2023-01)
Anisotropic Chloride Transport in 3D Printed Concrete and Its Dependence on Layer-Height and Interface-Types - Wang Hailong, Shao Jianwen, Zhang Jing, Zou Daoqin et al. (2021-11)
Bond Shear Performances and Constitutive Model of Interfaces Between Vertical and Horizontal Filaments of 3D Printed Concrete - Wang Li, Yang Yu, Yao Liang, Ma Guowei (2022-02)
Interfacial Bonding Properties of 3D Printed Permanent Formwork with the Post-Casted Concrete - Xu Yanqun, Yuan Qiang, Li Zemin, Shi Caijun et al. (2021-09)
Correlation of Inter-Layer Properties and Rheological Behaviors of 3DPC with Various Printing Time Intervals - Zhang Yu, Qiao Hongxia, Qian Rusheng, Xue Cuizhen et al. (2022-02)
Relationship Between Water-Transport Behavior and Inter-Layer Voids of 3D Printed Concrete - Zhang Yu, Zhang Yunsheng, Yang Lin, Liu Guojian et al. (2021-02)
Hardened Properties and Durability of Large-Scale 3D Printed Cement-Based Materials - Zhu Binrong, Nematollahi Behzad, Pan Jinlong, Zhang Yang et al. (2021-04)
3D Concrete Printing of Permanent Formwork for Concrete Column Construction
0 Citations
BibTeX
@article{huan_peng_wang_feng.2024.SotITPo3PC,
author = "Tao Huang and Zhongqi Peng and Mengge Wang and Shuang Feng",
title = "Study on the Ionic Transport Properties of 3D Printed Concrete",
doi = "10.3390/buildings14051216",
year = "2024",
journal = "Buildings",
volume = "14",
number = "5",
pages = "1216",
}
Formatted Citation
T. Huang, Z. Peng, M. Wang and S. Feng, “Study on the Ionic Transport Properties of 3D Printed Concrete”, Buildings, vol. 14, no. 5, p. 1216, 2024, doi: 10.3390/buildings14051216.
Huang, Tao, Zhongqi Peng, Mengge Wang, and Shuang Feng. “Study on the Ionic Transport Properties of 3D Printed Concrete”. Buildings 14, no. 5 (2024): 1216. https://doi.org/10.3390/buildings14051216.