3D Printing Effect on the Compressive Strength of Concrete Structures (2022-09)¶
10.1016/j.conbuildmat.2022.129108
, ,
Journal Article - Construction and Building Materials, Vol. 354
Abstract
The mechanical behaviour of annular 3D-printed cylindrical specimens is studied in this paper and compared to the expected theoretical behaviour of cast-moulded geometries. First, the compressive performance of the material as per standard EN 12390-3 is presented. The theoretical estimation differed from the test results and the reasons have been verified. Two key procedures are proposed by measuring the 3D-printed shapes: a geometrical characterization, in which both the material and the process parameters are considered, and a suitable formulation for defining the effective section of the printed geometries. The aim is to establish corrections for structural calculations, considering the material and the 3D printing process on the basis of the proposed guidelines and the test specimens.
¶
10 References
- Al-Qutaifi Sarah, Nazari Ali, Bagheri Ali (2018-07)
Mechanical Properties of Layered Geopolymer Structures Applicable in Concrete 3D Printing - Aramburu Amaia, Calderon-Uriszar-Aldaca Iñigo, Puente Iñigo (2022-05)
Bonding Strength of Steel-Rebars Perpendicular to the Hardened 3D Printed Concrete-Layers - Feng Peng, Meng Xinmiao, Chen Jian-Fei, Ye Lieping (2015-06)
Mechanical Properties of Structures 3D Printed with Cementitious Powders - Khoshnevis Behrokh (2003-11)
Automated Construction by Contour Crafting:
Related Robotics and Information Technologies - Khoshnevis Behrokh, Hwang Dooil, Yao Ke, Yeh Zhenghao (2006-05)
Mega-Scale Fabrication by Contour Crafting - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Hardened Properties of High-Performance Printing Concrete - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Mix-Design and Fresh Properties for High-Performance Printing Concrete - Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
Developments in Construction-Scale Additive Manufacturing Processes - Rippmann Matthias, Liew A., Mele Tom, Block Philippe (2018-03)
Design, Fabrication and Testing of Discrete 3D Sand-Printed Floor Prototypes - Salet Theo, Ahmed Zeeshan, Bos Freek, Laagland Hans (2018-05)
Design of a 3D Printed Concrete Bridge by Testing
15 Citations
- Iqbal Imtiaz, Kasim Tala, Besklubova Svetlana, Mustafa Ali et al. (2025-12)
Passive Determination of Anisotropic Compressive Strength of 3D Printed Concrete Using Multiple Neural Networks Enhanced with Explainable Machine Learning (XML) - Giulivo Marco, Capozzi Vittorio, Menna Costantino (2025-10)
Experimental and Analytical Assessment of the in-Plane Behaviour of 3D Printed Concrete Walls Subjected to Cyclic Loads - Chen Baixi, Yang Lei, Jiang Sheng (2025-09)
Stochastic Analysis of 3D Concrete Printing Process with Curvature and Inclination by Explainable Data-Driven Modelling - Si Wen, Khan Mehran, McNally Ciaran (2025-08)
Effect of Nano Silica with High Replacement of GGBS on Enhancing Mechanical Properties and Rheology of 3D Printed Concrete - Cisowski Adam, Kowalik Michał (2025-06)
The Influence of the Cross-Sectional Geometry on Stress Concentration in 3D Printed Concrete Elements:
A Preliminary Study - Schossler Rodrigo, Ullah Shafi, Alajlan Zaid, Yu Xiong (2025-01)
Data-Driven Analysis in 3D Concrete Printing:
Predicting and Optimizing Construction Mixtures - Yabanigül Meryem, Özer Derya (2024-12)
Exploring Architectural Units Through Robotic 3D Concrete Printing of Space-Filling Geometries - Giulivo Marco, Menna Costantino, Capozzi Vittorio, Asprone Domenico (2024-09)
Experimental Behavior of a 3D Printed Concrete Wall with Fixed Base Anchorage Subjected to In-Plane Cyclic Loads - Giwa Ilerioluwa, Kazemian Ali, Gopu Vijaya, Rupnow Tyson (2024-07)
A Compressive Load-Bearing-Analysis of 3D Printed Circular Elements - Aramburu Amaia, Calderon-Uriszar-Aldaca Iñigo, Puente Iñigo, Castano-Alvarez Ruben (2024-03)
Effects of 3D Printing on the Tensile Splitting Strength of Concrete Structures - Zhao Zengfeng, Ji Chenyuan, Xiao Jianzhuang, Yao Lei et al. (2023-11)
A Critical Review on Reducing the Environmental Impact of 3D Printing Concrete:
Material-Preparation, Construction-Process and Structure-Level - Shilar Fatheali, Ganachari Sharanabasava, Patil Veerabhadragouda, Bhojaraja B. et al. (2023-08)
A Review of 3D Printing of Geopolymer Composites for Structural and Functional Applications - Aramburu Amaia, Calderon-Uriszar-Aldaca Iñigo, Puente Iñigo (2023-05)
Wet Joint Performance of 3D Printed Concrete Beam Segments Under Flexural Loading - Aramburu Amaia, Calderon-Uriszar-Aldaca Iñigo, Puente Iñigo (2023-02)
Parametric Modelling of 3D Printed Concrete Segmented Beams with Rebars Under Bending Moments - Zahrani Abdullah, Alghamdi Abdulrahman, Basalah Ahmad (2022-12)
Computational Optimization of 3D Printed Concrete Walls for Improved Building Thermal Performance
BibTeX
@article{aram_cald_puen.2022.3PEotCSoCS,
author = "Amaia Aramburu and Iñigo Calderon-Uriszar-Aldaca and Iñigo Puente",
title = "3D Printing Effect on the Compressive Strength of Concrete Structures",
doi = "10.1016/j.conbuildmat.2022.129108",
year = "2022",
journal = "Construction and Building Materials",
volume = "354",
}
Formatted Citation
A. Aramburu, I. Calderon-Uriszar-Aldaca and I. Puente, “3D Printing Effect on the Compressive Strength of Concrete Structures”, Construction and Building Materials, vol. 354, 2022, doi: 10.1016/j.conbuildmat.2022.129108.
Aramburu, Amaia, Iñigo Calderon-Uriszar-Aldaca, and Iñigo Puente. “3D Printing Effect on the Compressive Strength of Concrete Structures”. Construction and Building Materials 354 (2022). https://doi.org/10.1016/j.conbuildmat.2022.129108.