Skip to content

Study on Flexural Behavior of Printed Concrete Wide Beams Using Polypropylene-Fibers (2023-06)

10.31276/vjste.65(4).48-53

 Pham Thi,  Trinh Duy, Nguyen Thi,  Do Trong, Nguyen Phan
Journal Article - Vietnam Journal of Science, Technology and Engineering, Vol. 65, Iss. 4, pp. 48-53

Abstract

Sustainability in building construction is an inevitable aspect of future construction projects. The justification of sustainability is highly appreciated by comparing 3D concrete printing technology with conventional construction. However, the 3D printing concrete system has limitations and challenges in industrial applications. The reason is that this process was initially used in small non-structural applications and is now being adopted for large-scale structures. Thanks to concrete printing machines, a wide variety of web frames are also available - something completely impossible to achieve using traditional formwork for pouring concrete. In this study, the girder web is designed in the style of truss beams. Three wide beams with different amounts of polypropylene (PP) fibre were printed, and 3-point loading tests were conducted. The failure mode, load-bearing capacity, and deflection were reported in this study. According to the results, applying concrete printing technology in civil and industrial construction is entirely feasible. The printing process successfully produced models with a nozzle diameter of 22 mm and layer height of 10 mm, ensuring sufficient adhesion force between the printing layers. Using a PP fibre content of about 0.25% yielded the best results in terms of concrete compressive strength and beams’ flexural strength, while a PP fibre content of about 1.00% tended to increase the ductility of the member. Although the failure mode is brittle, the beams exhibited deflection before fracture far beyond the allowable deflection value of a flexural member. Therefore, the application of printed components to construction is feasible.

20 References

  1. Ding Tao, Xiao Jianzhuang, Zou Shuai, Yu Jiangtao (2021-03)
    Flexural Properties of 3D Printed Fiber-Reinforced Concrete with Recycled Sand
  2. Ding Tao, Xiao Jianzhuang, Zou Shuai, Zhou Xinji (2020-08)
    Anisotropic Behavior in Bending of 3D Printed Concrete Reinforced with Fibers
  3. Hamidi Fatemeh, Aslani Farhad (2019-05)
    Additive Manufacturing of Cementitious Composites:
    Materials, Methods, Potentials, and Challenge
  4. Han Xiaoyu, Yan Jiachuan, Liu Mingjian, Huo Liang et al. (2021-10)
    Experimental Study on Large-Scale 3D Printed Concrete Walls Under Axial Compression
  5. Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
    A Review of 3D Printed Concrete:
    Performance-Requirements, Testing Measurements and Mix-Design
  6. Kazemian Ali, Yuan Xiao, Cochran Evan, Khoshnevis Behrokh (2017-04)
    Cementitious Materials for Construction-Scale 3D Printing:
    Laboratory Testing of Fresh Printing Mixture
  7. Li Zhijian, Wang Li, Ma Guowei, Sanjayan Jay et al. (2020-07)
    Strength and Ductility Enhancement of 3D Printing Structure Reinforced by Embedding Continuous Micro-Cables
  8. Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
    Developments in Construction-Scale Additive Manufacturing Processes
  9. Liu Miao, Zhang Qiyun, Tan Zhendong, Wang Li et al. (2021-01)
    Investigation of Steel-Wire-Mesh-Reinforcement Method for 3D Concrete Printing
  10. Lu Bing, Weng Yiwei, Li Mingyang, Qian Ye et al. (2019-02)
    A Systematical Review of 3D Printable Cementitious Materials
  11. Manikandan Karthick, Wi Kwangwoo, Zhang Xiao, Wang Kejin et al. (2020-03)
    Characterizing Cement Mixtures for Concrete 3D Printing
  12. Nair Sooraj, Panda Subhashree, Santhanam Manu, Sant Gaurav et al. (2020-05)
    A Critical Examination of the Influence of Material-Characteristics and Extruder-Geometry on 3D Printing of Cementitious Binders
  13. Paul Suvash, Zijl Gideon, Tan Ming, Gibson Ian (2018-05)
    A Review of 3D Concrete Printing Systems and Materials Properties:
    Current Status and Future Research Prospects
  14. Pham Thi, Nguyen Thu, Trinh Thanh, Nguyen Anh et al. (2022-08)
    Development of 3D Printers for Concrete Structures:
    Mix Proportion Design Approach and Laboratory Testing
  15. Pham Luong, Tran Jonathan, Sanjayan Jay (2020-04)
    Steel-Fiber-Reinforced 3D Printed Concrete:
    Influence of Fiber Sizes on Mechanical Performance
  16. Rehman Atta, Kim Jung-Hoon (2021-07)
    3D Concrete Printing:
    A Systematic Review of Rheology, Mix Designs, Mechanical, Microstructural, and Durability Characteristics
  17. Sakin Mehmet, Kiroglu Yusuf (2017-10)
    3D Printing of Buildings:
    Construction of the Sustainable Houses of the Future by BIM
  18. Weng Yiwei, Li Mingyang, Tan Ming, Qian Shunzhi (2018-01)
    Design 3D Printing Cementitious Materials via Fuller-Thompson-Theory and Marson-Percy-Model
  19. Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
    Large-Scale 3D Printing Concrete Technology:
    Current Status and Future Opportunities
  20. Zhu Binrong, Pan Jinlong, Nematollahi Behzad, Zhou Zhenxin et al. (2019-07)
    Development of 3D Printable Engineered Cementitious Composites with Ultra-High Tensile Ductility for Digital Construction

0 Citations

BibTeX
@article{pham_trin_nguy_do.2023.SoFBoPCWBUPF,
  author            = "Thi Loan Pham and Duy Thanh Trinh and Thi Hoai Thu Nguyen and Trong Quang Do and Phan Anh Nguyen",
  title             = "Study on Flexural Behavior of Printed Concrete Wide Beams Using Polypropylene-Fibers",
  doi               = "10.31276/vjste.65(4).48-53",
  year              = "2023",
  journal           = "Vietnam Journal of Science, Technology and Engineering",
  volume            = "65",
  number            = "4",
  pages             = "48--53",
}
Formatted Citation

T. L. Pham, D. T. Trinh, T. H. T. Nguyen, T. Q. Do and P. A. Nguyen, “Study on Flexural Behavior of Printed Concrete Wide Beams Using Polypropylene-Fibers”, Vietnam Journal of Science, Technology and Engineering, vol. 65, no. 4, pp. 48–53, 2023, doi: 10.31276/vjste.65(4).48-53.

Pham, Thi Loan, Duy Thanh Trinh, Thi Hoai Thu Nguyen, Trong Quang Do, and Phan Anh Nguyen. “Study on Flexural Behavior of Printed Concrete Wide Beams Using Polypropylene-Fibers”. Vietnam Journal of Science, Technology and Engineering 65, no. 4 (2023): 48–53. https://doi.org/10.31276/vjste.65(4).48-53.