Rheological Properties of Metakaolin-Based Geopolymers for Three-Dimensional Printing of Structures (2021-11)¶
Paiva Maria, Duarte Fonseca Rocha Larissa, , , Silva Emílio, Neumann Reiner,
Journal Article - ACI Materials Journal, Vol. 118, Iss. 6, pp. 177-187
Abstract
The use of geopolymers as binders in three-dimensional (3D) printing processes has great potential due to their fast strength development, high durability, and lower environmental impact compared to portland cement matrixes. Metakaolin-based geopolymers are a viable solution for a Brazilian-based additive manufacturing application due to the widespread availability of kaolinitic clays, which minimizes transportation costs and reduces the associated CO2 emissions. Nevertheless, it is necessary to identify the rheological behavior of this type of binder to evaluate its suitability in an extrusion process. This work presents a calorimetric and rheological characterization of pastes and mortars produced with a metakaolin-based geopolymer as the binder, exploring the influence of the nature of the activator, the water-solids ratio, and the aggregate on the rheological parameters that describe a 3D printing process, and on their evolution in time. Two types of metakaolin-based geopolymers were characterized: one activated with a mixture of potassium hydroxide (KOH) and potassium silicate (K2SiO3), and one activated with a mixture of sodium hydroxide (NaOH) and sodium silicate (NaSiO3). The water-solids ratio of each geopolymer paste varied between 0.40 and 0.50, and natural sand was added in a 40% volume per volume percent (v/v) fixed proportion to produce mortars. The yield stress of each sample was measured after different resting times using a vane rheometer. Isothermal heat flow curves were acquired in the same time scale to connect the reaction kinetics to the rheological measurements. The water-solids ratio and the presence of aggregate are able to modify the initial yield stress and the thixotropic buildup of the matrix. The sodium-based activator is correlated with a rapid structural buildup because of faster precursor dissolution and gel formation. The presence of sand increased the shear stress values and generated stiffer systems compared to the pure geopolymer pastes.
¶
19 References
- Al-Qutaifi Sarah, Nazari Ali, Bagheri Ali (2018-07)
Mechanical Properties of Layered Geopolymer Structures Applicable in Concrete 3D Printing - Bong Shin, Nematollahi Behzad, Nazari Ali, Xia Ming et al. (2018-09)
Fresh and Hardened Properties of 3D Printable Geopolymer Cured in Ambient Temperature - Bong Shin, Nematollahi Behzad, Xia Ming, Nazari Ali et al. (2019-09)
Properties of 3D Printable Ductile Fiber-Reinforced Geopolymer Composite for Digital Construction Applications - Ghaffar Seyed, Corker Jorge, Fan Mizi (2018-05)
Additive Manufacturing Technology and Its Implementation in Construction as an Eco-Innovative Solution - Ivanova Irina, Mechtcherine Viktor (2020-01)
Possibilities and Challenges of Constant Shear-Rate-Test for Evaluation of Structural Build-Up-Rate of Cementitious Materials - Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2020-01)
Yield-Stress-Criteria to Assess the Buildability of 3D Concrete Printing - Khan Mohd (2020-04)
Mix Suitable for Concrete 3D Printing:
A Review - Mechtcherine Viktor, Bos Freek, Perrot Arnaud, Silva Wilson et al. (2020-03)
Extrusion-Based Additive Manufacturing with Cement-Based Materials:
Production Steps, Processes, and Their Underlying Physics - Mendoza Reales Oscar, Duda Pedro, Silva Emílio, Paiva Maria et al. (2019-06)
Nanosilica-Particles as Structural Buildup Agents for 3D Printing with Portland Cement-Pastes - Moeini Mohammad, Hosseinpoor Masoud, Yahia Ammar (2020-05)
Effectiveness of the Rheometric Methods to Evaluate the Build-Up of Cementitious Mortars Used for 3D Printing - Ngo Tuan, Kashani Alireza, Imbalzano Gabriele, Nguyen Quynh et al. (2018-02)
Additive Manufacturing (3D Printing):
A Review of Materials, Methods, Applications and Challenges - Panda Biranchi, Bhagath Singh Gangapatnam, Unluer Cise, Tan Ming (2019-02)
Synthesis and Characterization of One-Part Geopolymers for Extrusion-Based 3D Concrete Printing - Panda Biranchi, Paul Suvash, Lim Jian, Tay Yi et al. (2017-08)
Additive Manufacturing of Geopolymer for Sustainable Built Environment - Panda Biranchi, Paul Suvash, Mohamed Nisar, Tay Yi et al. (2017-09)
Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar - Panda Biranchi, Tan Ming (2018-03)
Experimental Study on Mix Proportion and Fresh Properties of Fly-Ash-Based Geopolymer for 3D Concrete Printing - Panda Biranchi, Unluer Cise, Tan Ming (2018-10)
Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing - Panda Biranchi, Unluer Cise, Tan Ming (2019-08)
Extrusion and Rheology Characterization of Geopolymer Nanocomposites Used in 3D Printing - Paul Suvash, Tay Yi, Panda Biranchi, Tan Ming (2017-08)
Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction - Wangler Timothy, Lloret-Fritschi Ena, Reiter Lex, Hack Norman et al. (2016-10)
Digital Concrete:
Opportunities and Challenges
5 Citations
- Hasan Md, Xu Jie, Uddin Md (2025-11)
A Critical Review of 3D Printed Fiber-Based Geopolymer Concrete:
Fresh Properties, Mechanical Performance, and Current Limitations - Tarhan Yeşim, Tarhan İsmail, Şahin Remzi (2024-12)
Comprehensive Review of Binder Matrices in 3D Printing Construction:
Rheological Perspectives - Gyawali Biva, Haghnazar Ramtin, Akula Pavan, Alba Kamran et al. (2024-10)
A Review on 3D Printing with Clay and Sawdust/Natural Fibers:
Printability, Rheology, Properties, and Applications - Krishna R., Rehman Asif, Mishra Jyotirmoy, Saha Suman et al. (2024-06)
Additive Manufacturing of Geopolymer Composites for Sustainable Construction:
Critical Factors, Advancements, Challenges, and Future Directions - Matos Paulo, Zat Tuani, Lima Marcelo, Neto José et al. (2023-08)
Effect of the Superplasticizer-Addition Time on the Fresh Properties of 3D Printed Limestone-Calcined-Clay-Cement (LC³) Concrete
BibTeX
@article{paiv_duar_fern_tole.2021.RPoMBGfTDPoS,
author = "Maria D.M. Paiva and Larissa Duarte Fonseca Rocha and Letízia Ikeda Castrillon Fernandez and Romildo Dias Toledo Filho and Emílio C.C.M. Silva and Reiner Neumann and Oscar Aurelio Mendoza Reales",
title = "Rheological Properties of Metakaolin-Based Geopolymers for Three-Dimensional Printing of Structures",
doi = "10.14359/51733122",
year = "2021",
journal = "ACI Materials Journal",
volume = "118",
number = "6",
pages = "177--187",
}
Formatted Citation
M. D. M. Paiva, “Rheological Properties of Metakaolin-Based Geopolymers for Three-Dimensional Printing of Structures”, ACI Materials Journal, vol. 118, no. 6, pp. 177–187, 2021, doi: 10.14359/51733122.
Paiva, Maria D.M., Larissa Duarte Fonseca Rocha, Letízia Ikeda Castrillon Fernandez, Romildo Dias Toledo Filho, Emílio C.C.M. Silva, Reiner Neumann, and Oscar Aurelio Mendoza Reales. “Rheological Properties of Metakaolin-Based Geopolymers for Three-Dimensional Printing of Structures”. ACI Materials Journal 118, no. 6 (2021): 177–87. https://doi.org/10.14359/51733122.