Skip to content

Microstructure and Mechanical Properties of Cost-Efficient 3D Printed Concrete Reinforced with Polypropylene Fibers (2023-11)

10.3390/buildings13112813

 Ungureanu Dragoș, Onuțu Cătălin,  Țăranu Nicolae,  Vornicu Nicoleta, Zghibarcea Ștefan, Ghiga Dan, Spiridon Ionuț
Journal Article - Buildings, Vol. 13, Iss. 11, No. 2813

Abstract

Studying emerging and cutting-edge digital construction techniques, especially the utilization of 3D printing for concrete/mortar materials, holds significant importance due to the potential benefits that these technologies might offer over the traditional approach of casting concrete in place. In this study, a mixture composed of Portland cement, water, sand, limestone filler and polypropylene fibers was utilized for 3D printed concrete production towards the sustainable constructions approach. The benefits that sustain this statement include reduced construction time and material requirements, diminished error and cost, increase in construction safety, flexibility of architectural design, and improved quality with much less construction cost and waste. The microstructure, fresh and hardened mechanical properties of the polypropylene fiber reinforced 3D concrete were investigated. The results indicated that it is essential to attain a slump measurement of approximately 40 mm and a slump flow within the range of 140 to 160 mm, as stipulated by relevant standards (ASTM C1437 and C230/C230 M), in order to create a 3D concrete mixture suitable for extrusion. Also, the effects of printing parameters, fiber dosage, material composition, and other factors on the 3D printed concrete strength were discussed, and the corresponding adjustments were addressed.

15 References

  1. Bhushan Jindal Bharat, Jangra Parveen (2023-05)
    3D Printed Concrete:
    A Comprehensive Review of Raw Material’s Properties, Synthesis, Performance, and Potential Field Applications
  2. Ibrahim Kamoru, Zijl Gideon, Babafemi Adewumi (2023-03)
    Influence of Limestone-Calcined-Clay-Cement on Properties of 3D Printed Concrete for Sustainable Construction
  3. Lauff Philipp, Pugacheva Polina, Rutzen Matthias, Weiss Ursula et al. (2021-11)
    Evaluation of the Behavior of Carbon-Short-Fiber-Reinforced Concrete (CSFRC) Based on a Multi-Sensory Experimental Investigation and a Numerical Multi-Scale Approach
  4. Li Zhijian, Wang Li, Ma Guowei, Sanjayan Jay et al. (2020-07)
    Strength and Ductility Enhancement of 3D Printing Structure Reinforced by Embedding Continuous Micro-Cables
  5. Liu Hanqiu, Egbe King-James, Wang Haipeng, Nazar Ali et al. (2021-11)
    A Numerical Study on 3D Printed Cementitious Composites Mixes Subjected to Axial Compression
  6. Ma Guowei, A Ruhan, Xie Panpan, Pan Zhu et al. (2022-01)
    3D Printable Aerogel-Incorporated Concrete:
    Anisotropy Influence on Physical, Mechanical, and Thermal Insulation Properties
  7. Ma Guowei, Salman Nazar, Wang Li, Wang Fang (2020-02)
    A Novel Additive Mortar Leveraging Internal Curing for Enhancing Inter-Layer Bonding of Cementitious Composite for 3D Printing
  8. Marczyk Joanna, Ziejewska Celina, Gądek Szymon, Korniejenko Kinga et al. (2021-11)
    Hybrid Materials Based on Fly-Ash, Metakaolin, and Cement for 3D Printing
  9. Rehman Atta, Lee Sang-Min, Kim Jung-Hoon (2020-06)
    Use of Municipal Solid-Waste Incineration-Ash in 3D Printable Concrete
  10. Robayo-Salazar Rafael, Martínez Fabio, Vargas Armando, Gutiérrez Ruby (2023-06)
    3D Printing of Hybrid Cements Based on High Contents of Powders from Concrete, Ceramic and Brick Waste Chemically Activated with Sodium Sulphate (Na2SO4)
  11. Salah Husam, Mutalib Azrul, Kaish Amrul, Syamsir Agusril et al. (2023-07)
    Development of Ultra-High-Performance Silica-Fume-Based Mortar Incorporating Graphene-Nano-Platelets for 3D Concrete Printing Application
  12. Shahzad Qamar, Wang Xujiang, Wang Wenlong, Wan Yi et al. (2020-06)
    Coordinated Adjustment and Optimization of Setting-Time, Flowability, and Mechanical Strength for Construction 3D Printing Material Derived from Solid Waste
  13. Singh Narinder, Colangelo Francesco, Farina Ilenia (2023-06)
    Sustainable Non-Conventional Concrete 3D Printing:
    A Review
  14. Tay Yi, Qian Ye, Tan Ming (2019-05)
    Printability-Region for 3D Concrete Printing Using Slump- and Slump-Flow-Test
  15. Ungureanu Dragoș, Onuțu Cătălin, Isopescu Dorina, Țăranu Nicolae et al. (2023-06)
    A Novel Approach for 3D Printing Fiber-Reinforced Mortars

5 Citations

  1. Li Fuhai, Xiao Sai, Yang Bo, Li Kepu et al. (2025-09)
    Mechanical Properties and Anisotropy of 3D-Printed Concrete Modified with Multiscale Materials Based on Optimized Printing Process Design
  2. An Xuehui, Liang Qimin, Li Pengfei, You Wei et al. (2025-02)
    Experimental Assessment on Printing Performance and Mechanical Properties of Underwater Self-Protecting 3D Printing Concrete
  3. Maroszek Marcin, Rudziewicz Magdalena, Hutyra Adam, Dziura Paweł et al. (2024-12)
    Evaluation of 3D Concrete Printing Extrusion-Efficiency
  4. Bao Ta, Yeakleang Muy, Abdelouhab Sandra, Courard Luc (2024-10)
    Testing Mortars for 3D Printing:
    Correlation with Rheological Behavior
  5. Liu Bing, Chen Yuwen, Li Dongdong, Wang Yang et al. (2024-09)
    Study on the Fracture Behavior and Anisotropy of 3D Printing PVA-Fiber-Reinforced Concrete

BibTeX
@article{ungu_onut_tara_vorn.2023.MaMPoCE3PCRwPF,
  author            = "Dragoș Ungureanu and Cătălin Onuțu and Nicolae Țăranu and Nicoleta Vornicu and Ștefan Vladimir Zghibarcea and Dan Alexandru Ghiga and Ionuț Alexandru Spiridon",
  title             = "Microstructure and Mechanical Properties of Cost-Efficient 3D Printed Concrete Reinforced with Polypropylene Fibers",
  doi               = "10.3390/buildings13112813",
  year              = "2023",
  journal           = "Buildings",
  volume            = "13",
  number            = "11",
  pages             = "2813",
}
Formatted Citation

D. Ungureanu, “Microstructure and Mechanical Properties of Cost-Efficient 3D Printed Concrete Reinforced with Polypropylene Fibers”, Buildings, vol. 13, no. 11, p. 2813, 2023, doi: 10.3390/buildings13112813.

Ungureanu, Dragoș, Cătălin Onuțu, Nicolae Țăranu, Nicoleta Vornicu, Ștefan Vladimir Zghibarcea, Dan Alexandru Ghiga, and Ionuț Alexandru Spiridon. “Microstructure and Mechanical Properties of Cost-Efficient 3D Printed Concrete Reinforced with Polypropylene Fibers”. Buildings 13, no. 11 (2023): 2813. https://doi.org/10.3390/buildings13112813.