Skip to content

Impact Behavior of 3D Printed Fiber-Reinforced Cementitious Composite Beams (2024-03)

10.1016/j.compositesa.2024.108175

 Pan Jinlong, Ping Pengxin, Ding Boyin,  Zhu Binrong, Lin Yuanzheng, Ukrainczyk Neven, Zhang Hong,  Cai Jingming
Journal Article - Composites Part A: Applied Science and Manufacturing, No. 108175

Abstract

Recent interest has grown in using 3D printing for military and civil defense engineering, particularly for infrastructure resilience against impacts. This study delves into the impact resistance of 3D printed fiber-reinforced cementitious composite (FRCC) beams. By analyzing varying fiber content, impact directions, and 3D printing nozzle sizes, the research found that the total energy dissipation of 3D printed FRCC beams was more than 40% higher and the 3D printed beams exhibited superior impact resistance compared to traditional beams, largely due to the fibers' role. The impact energy dissipation varied with different impact directions for the specimens, and the Z direction was identified as the most resistant, demonstrating anisotropic behavior in impact resistance. Smaller nozzle sizes in printing showed higher total energy dissipation, indicating increased impact resistance. X-ray analysis further revealed that the 3D printing process creates denser beams with better fiber–matrix adhesion and less porosity, improving overall impact resistance.

20 References

  1. Cai Jingming, Sheng Zhaoliang, Wang Xiaoyi, Fang Yizhi et al. (2021-12)
    Effect of Reinforcement-Configurations on the Flexural Behaviors of 3D Printed Fiber-Reinforced Cementitious Composite Beams
  2. Chen Yu, Çopuroğlu Oğuzhan, Rodríguez Claudia, Filho Fernando et al. (2021-02)
    Characterization of Air-Void Systems in 3D Printed Cementitious Materials Using Optical Image Scanning and X-Ray Computed Tomography
  3. Ding Tao, Xiao Jianzhuang, Zou Shuai, Zhou Xinji (2020-08)
    Anisotropic Behavior in Bending of 3D Printed Concrete Reinforced with Fibers
  4. Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
    A Review of 3D Printed Concrete:
    Performance-Requirements, Testing Measurements and Mix-Design
  5. Jagoda Jeneé, Diggs-McGee Brandy, Kreiger Megan, Schuldt Steven (2020-04)
    The Viability and Simplicity of 3D Printed Construction:
    A Military Case Study
  6. Kreiger Eric, Kreiger Megan, Case Michael (2019-04)
    Development of the Construction Processes for Reinforced Additively Constructed Concrete
  7. Li Leo, Xiao Bofeng, Fang Z., Xiong Z. et al. (2020-11)
    Feasibility of Glass-Basalt Fiber-Reinforced Seawater Coral Sand Mortar for 3D Printing
  8. Ma Guowei, Bai Gang, Wang Li, Wang Fang (2022-07)
    Explosion-Resistance of 3D Printing Ultra-High-Performance Concrete Based on Contact-Explosion Tests
  9. Moini Mohamadreza, Baghaie Ahmadreza, Rodriguez Fabian, Zavattieri Pablo et al. (2021-06)
    Quantitative Microstructural Investigation of 3D Printed and Cast Cement-Pastes Using Micro-Computed Tomography- and Image-Analysis
  10. Paul Suvash, Zijl Gideon, Tan Ming, Gibson Ian (2018-05)
    A Review of 3D Concrete Printing Systems and Materials Properties:
    Current Status and Future Research Prospects
  11. Singh Amardeep, Liu Qiong, Xiao Jianzhuang, Lyu Qifeng (2022-02)
    Mechanical and Macrostructural Properties of 3D Printed Concrete Dosed with Steel-Fibers under Different Loading-Direction
  12. Soto Borja, Agustí-Juan Isolda, Hunhevicz Jens, Joss Samuel et al. (2018-05)
    Productivity of Digital Fabrication in Construction:
    Cost and Time-Analysis of a Robotically Built Wall
  13. Tinoco Matheus, Mendonça Érica, Fernandez Letízia, Caldas Lucas et al. (2022-04)
    Life Cycle Assessment and Environmental Sustainability of Cementitious Materials for 3D Concrete Printing:
    A Systematic Literature Review
  14. Xiao Jianzhuang, Han Nv, Zhang Lihai, Zou Shuai (2021-05)
    Mechanical and Microstructural Evolution of 3D Printed Concrete with Polyethylene-Fiber and Recycled Sand at Elevated Temperatures
  15. Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
    Large-Scale 3D Printing Concrete Technology:
    Current Status and Future Opportunities
  16. Yang Yekai, Wu Chengqing, Liu Zhongxian, Li Jun et al. (2022-02)
    Characteristics of 3D Printing Ultra-High-Performance Fiber-Reinforced Concrete Under Impact Loading
  17. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-02)
    Effect of Polyethylene-Fiber Content on Workability and Mechanical-Anisotropic Properties of 3D Printed Ultra-High-Ductile Concrete
  18. Zhang Jingchuan, Wang Jialiang, Dong Sufen, Yu Xun et al. (2019-07)
    A Review of the Current Progress and Application of 3D Printed Concrete
  19. Zhu Binrong, Pan Jinlong, Li Junrui, Wang Penghui et al. (2022-07)
    Relationship Between Microstructure and Strain-Hardening Behavior of 3D Printed Engineered Cementitious Composites
  20. Zhu Binrong, Pan Jinlong, Zhou Zhenxin, Cai Jingming (2021-04)
    Mechanical Properties of Engineered Cementitious Composites Beams Fabricated by Extrusion-Based 3D

5 Citations

  1. Delavar Mohammad, Aslani Farhad, Sercombe Tim (2025-10)
    Cracking Behaviour in 3D Concrete Printed Fiber-Reinforced Cementitious Composites:
    A Review
  2. Bu Dechao, Zhang Jiawei, Wu Gan, Xia Zixu et al. (2025-09)
    Impact Performance of 3D Printed ECC Inspired by Biological Bouligand Structure
  3. Ye Huzi, He Qianpeng, Ping Pengxin, Pan Jinlong et al. (2025-06)
    Anisotropic Flexural Behavior and Energy Absorption of 3D Printed Engineered Cementitious Composites (3DP-ECC) Beams Under Low-Velocity Impact
  4. Zhang Ziqi, Pan Tinghong, Guoa Rongxin, Lin Runsheng et al. (2025-04)
    Simulation and Analysis of Material Stacking and Migration Induced by Extrusion Behavior in 3D Printed Concrete
  5. Yang Rijiao, Xu Chengji, Lan Yan, Qiu Yue et al. (2024-08)
    Near Pixel-Level Characterisation of Micro-Fibers in 3D Printed Cementitious Composites and Migration Mechanisms Using a Novel Iterative Method

BibTeX
@article{pan_ping_ding_zhu.2024.IBo3PFRCCB,
  author            = "Jinlong Pan and Pengxin Ping and Boyin Ding and Binrong Zhu and Yuanzheng Lin and Neven Ukrainczyk and Hong Zhang and Jingming Cai",
  title             = "Impact Behavior of 3D Printed Fiber-Reinforced Cementitious Composite Beams",
  doi               = "10.1016/j.compositesa.2024.108175",
  year              = "2024",
  journal           = "Composites Part A: Applied Science and Manufacturing",
  pages             = "108175",
}
Formatted Citation

J. Pan, “Impact Behavior of 3D Printed Fiber-Reinforced Cementitious Composite Beams”, Composites Part A: Applied Science and Manufacturing, p. 108175, 2024, doi: 10.1016/j.compositesa.2024.108175.

Pan, Jinlong, Pengxin Ping, Boyin Ding, Binrong Zhu, Yuanzheng Lin, Neven Ukrainczyk, Hong Zhang, and Jingming Cai. “Impact Behavior of 3D Printed Fiber-Reinforced Cementitious Composite Beams”. Composites Part A: Applied Science and Manufacturing, 2024, 108175. https://doi.org/10.1016/j.compositesa.2024.108175.