Skip to content

Energy Simulation and Life Cycle Assessment of a 3D Printable Building (2023-01)

10.1016/j.clema.2023.100168

Khalili Tari Mohammadreza, Reza Faraji Amir, Aslani Alireza,  Zahedi Rahim
Journal Article - Cleaner Materials, Vol. 7

Abstract

The construction industry plays a key role in the economic development of countries. The industry faces challenges such as high energy consumption, long construction time, high manufacturing costs. 3D printing technology can solve many problems in this industry. The goal of this research is to find suitable materials for the 3D printing of an energy-efficient building with the least environmental impact. Magnesium potassium phosphate cement (MKPC) was selected for this study. In the next step, energy consumption in the building is simulated and different scenarios are considered to optimize energy consumption and reduce environmental impacts. Then, the life cycle assessment is done for the best scenario. Finally, this scenario is compared to the case where portland cement enters the composition. The simulation results show that PCM (phase change materials) has very little effect on reducing the energy consumption of the building. In contrast, insulation has almost halved energy consumption. Magnesium oxide and monopotassium phosphate have a significant share in the environmental effects of concrete walls. By adding 30% by volume of M20 concrete, the environmental impacts are reduced almost 28%.

14 References

  1. Alhumayani Hashem, Gomaa Mohamed, Soebarto Veronica, Jabi Wassim (2020-06)
    Environmental Assessment of Large-Scale 3D Printing in Construction:
    A Comparative Study between Cob and Concrete
  2. Chen Mingxu, Li Laibo, Wang Jiaao, Huang Yongbo et al. (2019-10)
    Rheological Parameters and Building Time of 3D Printing Sulphoaluminate-Cement-Paste Modified by Retarder and Diatomite
  3. Ebrahimi Mahdi, Mohseni Mohammad, Aslani Alireza, Zahedi Rahim (2022-08)
    Investigation of Thermal Performance and Life Cycle Assessment of a 3D Printed Building
  4. Han Yilong, Yang Zhihan, Ding Tao, Xiao Jianzhuang (2020-08)
    Environmental and Economic Assessment on 3D Printed Buildings with Recycled Concrete
  5. He Yawen, Zhang Yamei, Zhang Chao, Zhou Hongyu (2020-05)
    Energy-Saving-Potential of 3D Printed Concrete Building with Integrated Living Wall
  6. Hou Shaodan, Duan Zhenhua, Xiao Jianzhuang, Ye Jun (2020-12)
    A Review of 3D Printed Concrete:
    Performance-Requirements, Testing Measurements and Mix-Design
  7. Khan Mohammad, Sanchez Florence, Zhou Hongyu (2020-04)
    3D Printing of Concrete:
    Beyond Horizons
  8. Long Wujian, Tao Jie-Lin, Lin Can, Gu Yucun et al. (2019-08)
    Rheology and Buildability of Sustainable Cement-Based Composites Containing Micro-Crystalline Cellulose for 3D Printing
  9. Mahadevan Meera, Francis Ann, Thomas Albert (2020-08)
    A Simulation-Based Investigation of Sustainability Aspects of 3D Printed Structures
  10. Ngo Tuan, Kashani Alireza, Imbalzano Gabriele, Nguyen Quynh et al. (2018-02)
    Additive Manufacturing (3D Printing):
    A Review of Materials, Methods, Applications and Challenges
  11. Pessoa Ana Sofia, Guimarães Ana, Lucas Sandra, Simões Nuno (2021-02)
    3D Printing in the Construction Industry:
    A Systematic Review of the Thermal Performance in Buildings
  12. Sakin Mehmet, Kiroglu Yusuf (2017-10)
    3D Printing of Buildings:
    Construction of the Sustainable Houses of the Future by BIM
  13. Weng Yiwei, Ruan Shaoqin, Li Mingyang, Mo Liwu et al. (2019-06)
    Feasibility Study on Sustainable-Magnesium-Potassium-Phosphate Cement-Paste for 3D Printing
  14. Zhao Zhihui, Chen Mingxu, Xu Jiabin, Li Laibo et al. (2021-03)
    Mix-Design and Rheological Properties of Magnesium-Potassium-Phosphate Cement Composites Based on the 3D Printing-Extrusion-System

9 Citations

  1. Babajaniniashirvani Vida, Afsari Kereshmeh, McCoy Andrew (2025-12)
    Investigating Key Competencies for 3D Concrete Printing in Affordable Housing
  2. Geng Renyu, Jiang Jinming, Du Pengcong, Zhang Huiliang et al. (2025-11)
    Multiscale Thermal Optimization of 3D-Printed Walls:
    Integrating Structure, Material, and Process with Fire-Thermal Synergy
  3. Panchal Priyanka, Choi Myoungsung (2025-07)
    A Review on Effect of Natural Fibers to Mitigate CO2 Footprint and Enhance Engineering Properties of 3D Printing Concrete
  4. Mahdy Deena, Marais Eugene, Abdelrahim Marwa, Dubor Alexandre et al. (2025-06)
    Life Cycle Assessment of Earth-Based Residential Unit “TOVA”:
    A 3D Printed On-Site Load-Bearing Structure
  5. Sovetova Meruyert, Kaiser Calautit John (2024-08)
    Thermal and Energy Efficiency in 3D Printed Buildings:
    Review of Geometric Design, Materials and Printing Processes
  6. Khan Mehran, McNally Ciaran (2024-05)
    Recent Developments on Low-Carbon 3D Printing Concrete:
    Revolutionizing Construction Through Innovative Technology
  7. Hassan Habibelrahman, Rodriguez-Ubinas Edwin, Tamimi Adil, Trepci Esra et al. (2024-04)
    Towards Innovative and Sustainable Buildings:
    A Comprehensive Review of 3D Printing in Construction
  8. Bianchi Iacopo, Volpe Stelladriana, Fiorito Francesco, Forcellese Archimede et al. (2024-01)
    Life Cycle Assessment of Building Envelopes Manufactured Through Different 3D Printing Technologies
  9. Wang Chaofan, Chen Bing, Vo Thanh, Rezania Mohammad (2023-07)
    Mechanical Anisotropy, Rheology and Carbon Footprint of 3D Printable Concrete:
    A Review

BibTeX
@article{khal_reza_asla_zahe.2023.ESaLCAoa3PB,
  author            = "Mohammadreza Khalili Tari and Amir Reza Faraji and Alireza Aslani and Rahim Zahedi",
  title             = "Energy Simulation and Life Cycle Assessment of a 3D Printable Building",
  doi               = "10.1016/j.clema.2023.100168",
  year              = "2023",
  journal           = "Cleaner Materials",
  volume            = "7",
}
Formatted Citation

M. K. Tari, A. R. Faraji, A. Aslani and R. Zahedi, “Energy Simulation and Life Cycle Assessment of a 3D Printable Building”, Cleaner Materials, vol. 7, 2023, doi: 10.1016/j.clema.2023.100168.

Tari, Mohammadreza Khalili, Amir Reza Faraji, Alireza Aslani, and Rahim Zahedi. “Energy Simulation and Life Cycle Assessment of a 3D Printable Building”. Cleaner Materials 7 (2023). https://doi.org/10.1016/j.clema.2023.100168.