3D Printing of Cement Composites (2013-07)¶
10.1179/174367509x12472364600878
, Williams Reuben, , Farahi Elham
Journal Article - Advances in Applied Ceramics, Vol. 109, Iss. 5, pp. 287-290
Abstract
The aims of this study were to investigate the feasibility of generating 3D structures directly in rapid-hardening Portland cement (RHPC) using 3D Printing (3DP) technology. 3DP is a Additive Layer Manufacturing (ALM) process that generates parts directly from CAD in a layer-wise manner. 3D structures were successfully printed using a polyvinylalcohol: RHPC ratio of 3:97 w/w, with print resolutions of better than 1mm. The test components demonstrated the manufacture of features, including off-axis holes, overhangs / undercuts etc that would not be manufacturable using simple mould tools. Samples hardened by 1 day postbuild immersion in water at RT offered Modulus of Rupture (MOR) values of up to 0.8±0.1MPa, and, after 26 days immersion in water at RT, offered MOR values of 2.2±0.2MPa, similar to bassanite-based materials more typically used in 3DP (1-3 MPa). Post-curing by water immersion restructured the structure, removing the layering typical of ALM processes, and infilling porosit
¶
0 References
51 Citations
- Chhabra Gulshan, Gupta Anjali, Bali Rajan, Tanwar Lovesh (2025-07)
Advancing Sustainability in Construction:
A Comprehensive Study on 3D-Printed Concrete Technologies - Khare Karan, Khan Subim, Lal Dhirajkumar, Sonawane Pavankumar et al. (2025-07)
Design and Development of a Nozzle Assembly for 3D Concrete Printing Applications - Pour Arash, Farsangi Ehsan, Yang T., Li Shaofan et al. (2025-06)
3D Printing of Conventional and Geopolymer Concretes:
Advancements, Challenges, Future Directions, and Cost Analysis - Asaf Ofer, Bentur Arnon, Amir Oded, Larianovsky Pavel et al. (2024-09)
A 3D Printing Platform for Design and Manufacturing of Multi-Functional Cementitious Construction Components and Its Validation for a Post-Tensioned Beam - Asaf Ofer, Bentur Arnon, Larianovsky Pavel, Sprecher Aaron (2024-07)
Granular Materials for 3D Printing of Construction Components and Structures - Zuo Zibo, Corte Wouter, Huang Yulin, Chen Xiaoming et al. (2024-05)
Strategies Towards Large-Scale 3D Printing Without Size-Constraints - Vallurupalli Kavya, Libre Nicolas, Khayat Kamal (2024-04)
Characterization of Extrudability Using Rheology and Desorptivity - Shahid Mursaleen, Sglavo Vincenzo (2024-03)
Binder-Jetting 3D Printing of Binary Cement-Siliceous Sand Mixture - Liu Xiongfei, Wang Nan, Zhang Yi, Ma Guowei (2024-02)
Optimization of Printing Precision and Mechanical Property for Powder-Based 3D Printed Magnesium Phosphate Cement Using Fly-Ash - Eugenin Claudia, Cuevas Villalobos Karla, Navarrete Iván (2023-12)
Temperature-Dependance of 3D Printed Concrete Produced with Copper-Tailings - Vergara Luis, Pérez Juan, Colorado Henry (2023-05)
3D Printing of Ordinary Portland Cement with Waste-Wood-Derived Biochar Obtained from Gasification - Ma Guowei, Hu Tingyu, Wang Fang, Liu Xiongfei et al. (2023-02)
Magnesium Phosphate Cement for Powder-Based 3D Concrete Printing:
Systematic Evaluation and Optimization of Printability and Printing Quality - Chun Seung-Yeop, Kim Su-jin, Kim Woon-Gi, Lee Geumyeon et al. (2022-12)
Powder-Bed-Based 3D Printing with Cement for Sustainable Casting - Li Zhengrong, Xing Wenjing, Sun Jingting, Feng Xiwen (2022-12)
Multi-Scale Structural Characteristics and Heat-Moisture Properties of 3D Printed Building Walls:
A Review - Ahmed Ghafur, Askandar Nasih, Jumaa Ghazi (2022-07)
A Review of Large-Scale 3DCP:
Material-Characteristics, Mix-Design, Printing-Process, and Reinforcement-Strategies - Ranjan Rajeev, Kumar Deepak, Kundu Manoj, Chandra Moi Subhash (2022-03)
A Critical Review on Classification of Materials Used in 3D Printing Process - Mai (née Dressler) Inka, Lowke Dirk, Perrot Arnaud (2022-03)
Fluid-Intrusion in Powder-Beds for Selective Cement-Activation:
An Experimental and Analytical Study - Ali Md., Issayev Gani, Shehab Essam, Sarfraz Shoaib (2022-02)
A Critical Review of 3D Printing and Digital Manufacturing in Construction Engineering - Eugenin Claudia, Navarrete Iván, Brevis Wernher, Lopez Mauricio (2022-02)
Air-Bubbles as an Admixture for Printable Concrete:
A Review of the Rheological Effect of Entrained Air - Min Kyung-Sung, Park Kwang-Min, Lee Bong-Chun, Roh Young-Sook (2021-12)
Chloride Diffusion by Build Orientation of Cementitious Material-Based Binder-Jetting 3D Printing Mortar - Shahzad Qamar, Shen Junyi, Naseem Rabia, Yao Yonggang et al. (2021-10)
Influence of Phase-Change-Material on Concrete Behavior for Construction 3D Printing - Rehman Asif, Sglavo Vincenzo (2021-08)
3D Printing of Portland-Cement-Containing Bodies - Hoffmann Marcin, Żarkiewicz Krzysztof, Zieliński Adam, Skibicki Szymon et al. (2021-05)
Foundation Piles:
A New Feature for Concrete 3D Printers - Zhang Yu, Zhang Yunsheng, Yang Lin, Liu Guojian et al. (2021-02)
Hardened Properties and Durability of Large-Scale 3D Printed Cement-Based Materials - Vallurupalli Kavya, Farzadnia Nima, Khayat Kamal (2021-01)
Effect of Flow Behavior and Process-Induced Variations on Shape Stability of 3D Printed Elements:
A Review - Kristombu Baduge Shanaka, Navaratnam Satheeskumar, Zidan Yousef, McCormack Tom et al. (2021-01)
Improving Performance of Additive Manufactured Concrete:
A Review on Material Mix-Design, Processing, Inter-Layer Bonding, and Reinforcing-Methods - Jones Scott (2020-11)
Fused Filament-Fabrication Printer Modified to Dispense Cement-Paste for Concrete Additive Manufacturing Studies - Yu Shiwei, Du Hongjian, Sanjayan Jay (2020-07)
Aggregate-Bed 3D Concrete Printing with Cement-Paste Binder - Li Zhanzhao, Hojati Maryam, Wu Zhengyu, Piasente Jonathon et al. (2020-07)
Fresh and Hardened Properties of Extrusion-Based 3D Printed Cementitious Materials:
A Review - Lowke Dirk, Talke Daniel, Mai (née Dressler) Inka, Weger Daniel et al. (2020-05)
Particle-Bed 3D Printing by Selective Cement-Activation:
Applications, Material and Process Technology - Shakor Pshtiwan, Nejadi Shami, Paul Gavin (2019-11)
Investigation into the Effect of Delays Between Printed Layers on the Mechanical Strength of Inkjet 3DP Mortar - Paolini Alexander, Kollmannsberger Stefan, Rank Ernst (2019-10)
Additive Manufacturing in Construction:
A Review on Processes, Applications, and Digital Planning Methods - Xia Ming, Nematollahi Behzad, Sanjayan Jay (2019-09)
Post-Processing Techniques to Enhance Strength of Portland Cement Mortar Digitally Fabricated Using Powder-Based 3D Printing Process - Zhang Jingchuan, Wang Jialiang, Dong Sufen, Yu Xun et al. (2019-07)
A Review of the Current Progress and Application of 3D Printed Concrete - Nematollahi Behzad, Xia Ming, Sanjayan Jay (2019-07)
Post-processing Methods to Improve Strength of Particle-Bed 3D Printed Geopolymer for Digital Construction Applications - Holt Camille, Edwards Laurie, Keyte Louise, Moghaddam Farzad et al. (2019-02)
Construction 3D Printing - Li Zhijian, Wang Li, Ma Guowei (2019-02)
Method for the Enhancement of Buildability and Bending-Resistance of Three-Dimensional-Printable Tailing Mortar - Shakor Pshtiwan, Nejadi Shami, Paul Gavin, Malek Sardar (2019-01)
Review of Emerging Additive Manufacturing Technologies in 3D Printing of Cementitious Materials in the Construction Industry - Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete - Ma Guowei, Sun Junbo, Wang Li, Aslani Farhad et al. (2018-09)
Electromagnetic and Microwave-Absorbing Properties of Cementitious Composite for 3D Printing Containing Waste Copper Solids - Xia Ming, Nematollahi Behzad, Sanjayan Jay (2018-09)
Compressive Strength and Dimensional Accuracy of Portland Cement Mortar Made Using Powder-Based 3D Printing for Construction Applications - Lowke Dirk, Dini Enrico, Perrot Arnaud, Weger Daniel et al. (2018-07)
Particle-Bed 3D Printing in Concrete Construction:
Possibilities and Challenges - Buswell Richard, Silva Wilson, Jones Scott, Dirrenberger Justin (2018-06)
3D Printing Using Concrete-Extrusion:
A Roadmap for Research - Li Zhijian, Wang Li, Ma Guowei (2018-05)
Method for the Enhancement of Buildability and Bending-Resistance of 3D Printable Tailing Mortar - Zhang Yu, Zhang Yunsheng, Liu Guojian, Yang Yonggan et al. (2018-04)
Fresh Properties of a Novel 3D Printing Concrete Ink - Tian Wei, Han Nv (2018-04)
Pore Characteristics (>0.1mm) Of Non-Air-Entrained Concrete Destroyed by Freeze-Thaw-Cycles Based on CT Scanning and 3D Printing - Ketel Sabrina, Falzone Gabriel, Wang Bu, Washburn Newell et al. (2018-04)
A Printability Index for Linking Slurry Rheology to the Geometrical Attributes of 3D Printed Components - Ngo Tuan, Kashani Alireza, Imbalzano Gabriele, Nguyen Quynh et al. (2018-02)
Additive Manufacturing (3D Printing):
A Review of Materials, Methods, Applications and Challenges - Ma Guowei, Li Zhijian, Wang Li (2017-12)
Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing - Ma Guowei, Wang Li (2017-08)
A Critical Review of Preparation Design and Workability Measurement of Concrete Material for Large-Scale 3D Printing - Shakor Pshtiwan, Sanjayan Jay, Nazari Ali, Nejadi Shami (2017-02)
Modified 3D Printed Powder to Cement-Based Material and Mechanical Properties of Cement Scaffold Used in 3D Printing
BibTeX
@article{gibb_will_purn_fara.2010.3PoCC,
author = "Gregory John Gibbons and Reuben Williams and Phil Purnell and Elham Farahi",
title = "3D Printing of Cement Composites",
doi = "10.1179/174367509x12472364600878",
year = "2010",
journal = "Advances in Applied Ceramics",
volume = "109",
number = "5",
pages = "287--290",
}
Formatted Citation
G. J. Gibbons, R. Williams, P. Purnell and E. Farahi, “3D Printing of Cement Composites”, Advances in Applied Ceramics, vol. 109, no. 5, pp. 287–290, 2010, doi: 10.1179/174367509x12472364600878.
Gibbons, Gregory John, Reuben Williams, Phil Purnell, and Elham Farahi. “3D Printing of Cement Composites”. Advances in Applied Ceramics 109, no. 5 (2010): 287–90. https://doi.org/10.1179/174367509x12472364600878.