Skip to content

Mechanical Properties and Crack-Deflection Mechanisms in 3D Printed Porous Geopolymers with Cellular Structures (2024-11)

10.1080/17452759.2024.2425824

 Lori Ali,  Mehrali Mehdi
Journal Article - Virtual and Physical Prototyping, Vol. 19, Iss. 1

Abstract

This study focuses on using helical design patterns via 3D printing to create geopolymer with a highly porous structure in order to enhance their strength-density relationship and fracture properties. In this regard, to create porous structure, different pitch angles and infill densities were chosen, and mechanical and fracture properties were examined. The results of mechanical strength tests revealed that while the pitch angle does not significantly affect compressive strength, flexural strength is improved by implementing a low pitch angle helical structure, which leads to the strength-density relationship improvement. Additionally, the work of fracture results demonstrated an enhancement for samples with low pitch angles, such as α15° and α30°, compared to cast and non-directional printed samples. The digital image correlation and fracture surface analysis showed several fracture mechanisms, predominantly crack deflection and twisting, in samples with low pitch angles, which contributes to the observed improvements in the work of fracture.

20 References

  1. Alghamdi Hussam, Neithalath Narayanan (2019-07)
    Synthesis and Characterization of 3D Printable Geopolymeric Foams for Thermally Efficient Building Envelope Materials
  2. Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
    Additive Manufacturing of Concrete in Construction:
    Potentials and Challenges of 3D Concrete Printing
  3. Breseghello Luca, Hajikarimian Hamed, Jørgensen Henrik, Naboni Roberto (2023-07)
    3DLightBeam+:
    Design, Simulation, and Testing of Carbon-Efficient Reinforced 3D Concrete Printed Beams
  4. Geng Zifan, Pan Hao, Zuo Wenqiang, She Wei (2022-05)
    Functionally Graded Lightweight Cement-Based Composites with Outstanding Mechanical Performances via Additive Manufacturing
  5. Jiang Quan, Liu Qiang, Wu Si, Zheng Hong et al. (2022-06)
    Modification Effect of Nano-Silica and Polypropylene-Fiber for Extrusion-Based 3D Printing Concrete:
    Printability and Mechanical Anisotropy
  6. Liu Qiang, Jiang Quan, Huang Mojia, Xin Jie et al. (2022-03)
    Modifying Effect of Anionic Polyacrylamide Dose for Cement-Based 3DP Materials:
    Printability and Mechanical Performance Tests
  7. Liu Junli, Li Shuai, Fox Kate, Tran Jonathan (2021-12)
    3D Concrete Printing of Bio-Inspired Bouligand Structure:
    A Study on Impact-Resistance
  8. Liu Junli, Tran Jonathan, Nguyen Vuong, Gunasekara Chamila et al. (2023-06)
    3D Printing of Cementitious Mortar with Milled Recycled Carbon-Fibers:
    Influences of Filament Offset on Mechanical Properties
  9. Moini Mohamadreza, Olek Jan, Youngblood Jeffrey, Magee Bryan et al. (2018-08)
    Additive Manufacturing and Performance of Architectured Cement-Based Materials
  10. Moini Mohamadreza, Rodriguez Fabian, Olek Jan, Youngblood Jeffrey et al. (2024-07)
    Mechanical Properties and Fracture Phenomena in 3D Printed Helical Cementitious Architected Materials Under Compression
  11. Nguyen Vuong, Liu Junli, Li Shuai, Zhang Guomin et al. (2022-10)
    Modelling of 3D Printed Bio-Inspired Bouligand Cementitious Structures Reinforced with Steel-Fibers
  12. Prihar Arjun, Gupta Shashank, Esmaeeli Hadi, Moini Mohamadreza (2024-08)
    Tough Double-Bouligand Architected Concrete Enabled by Robotic Additive Manufacturing
  13. Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2019-08)
    Mechanical Characterization of 3D Printable Concrete
  14. Ralston Nadia, Gupta Shashank, Moini Mohamadreza (2024-05)
    3D Printing of Architected Calcium-Silicate Binders with Enhanced and In-Situ Carbonation
  15. Tay Yi, Lim Jian, Li Mingyang, Tan Ming (2022-03)
    Creating Functionally Graded Concrete Materials with Varying 3D Printing Parameters
  16. Wi Kwangwoo, Wang Kejin, Taylor Peter, Laflamme Simon et al. (2021-09)
    Properties and Microstructure of Extrusion-Based 3D Printing Mortar Containing a Highly Flowable, Rapid Set Grout
  17. Wolfs Robert, Bos Freek, Salet Theo (2019-03)
    Hardened Properties of 3D Printed Concrete:
    The Influence of Process Parameters on Inter-Layer Adhesion
  18. Yang Yekai, Wu Chengqing, Liu Zhongxian, Wang Hailiang et al. (2021-10)
    Mechanical Anisotropy of Ultra-High-Performance Fiber-Reinforced Concrete for 3D Printing
  19. Zafar Muhammad, Bakhshi Amir, Hojati Maryam (2023-10)
    Printability and Shape Fidelity Evaluation of Self-Reinforced Engineered Cementitious Composites
  20. Zhou Wen, McGee Wesley, Gökçe H., Li Victor (2023-08)
    A Bio-Inspired Solution to Alleviate Anisotropy of 3D Printed Engineered Cementitious Composites (3DP-ECC):
    Knitting/Tilting Filaments

3 Citations

  1. Pereira Carolina, Vieira Henrique, Gonçalves Nuno, Ascensão Guilherme et al. (2025-05)
    Innovative Waste-Containing 3D-Printed Geopolymer Structures for Enhanced Acoustic Comfort in Built Environments
  2. Lori Ali, Novais Rui, Ascensão Guilherme, Fernandes Fábio et al. (2025-05)
    Chemically Foamed Geopolymers for 3D Printing Applications
  3. Lori Ali, Mehrali Mehdi (2025-01)
    Filament-Geometry-Control of Printable Geopolymer Using Experimental and Data-Driven Approaches

BibTeX
@article{lori_mehr.2024.MPaCDMi3PPGwCS,
  author            = "Ali Rezaei Lori and Mehdi Mehrali",
  title             = "Mechanical Properties and Crack-Deflection Mechanisms in 3D Printed Porous Geopolymers with Cellular Structures",
  doi               = "10.1080/17452759.2024.2425824",
  year              = "2024",
  journal           = "Virtual and Physical Prototyping",
  volume            = "19",
  number            = "1",
}
Formatted Citation

A. R. Lori and M. Mehrali, “Mechanical Properties and Crack-Deflection Mechanisms in 3D Printed Porous Geopolymers with Cellular Structures”, Virtual and Physical Prototyping, vol. 19, no. 1, 2024, doi: 10.1080/17452759.2024.2425824.

Lori, Ali Rezaei, and Mehdi Mehrali. “Mechanical Properties and Crack-Deflection Mechanisms in 3D Printed Porous Geopolymers with Cellular Structures”. Virtual and Physical Prototyping 19, no. 1 (2024). https://doi.org/10.1080/17452759.2024.2425824.