Skip to content

Printability and Hardening Performance of Three-Dimensionally-Printed Geopolymer Based on Lunar Regolith Simulant for Automated Construction of Lunar Infrastructure (2023-12)

10.1007/s11709-023-0003-0

Li Feng, Zhang Rongrong, Zhou Siqi,  Zhu Xingyi
Journal Article - Frontiers of Structural and Civil Engineering

Abstract

Using an in situ lunar regolith as a construction material in combination with 3D printing not only reduces the weight of materials carried from the Earth but also improves the automation of lunar infrastructure construction. This study aims to improve the printability of a geopolymer based on a BH-1 lunar regolith simulant, including the extrudability, open time, and buildability, by controlling the temperature and adding admixtures. Rheological parameters were used to represent printability with different water-to-binder ratios, printing temperatures, and contents of additives. The mechanical properties of the hardening geopolymer with different filling paths and loading directions were tested. The results show that heating the printed filaments with a water-to-binder ratio of 0.32 at 80 °C can adjust the printability without adding any additive, which can reduce the construction cost of lunar infrastructure. The printability of the BH-1 geopolymer can also be improved by adding 0.3% Attagel-50 and 0.5% polypropylene fiber by mass at a temperature of 20 °C to cope with the changeable environmental conditions on the Moon. After curing under a simulated lunar environment, the 72-h flexural and compressive strengths of the geopolymer specimens reach 4.1 and 48.1 MPa, respectively, which are promising considering that the acceleration of gravity on the Moon is ⅙ of that on the Earth.

19 References

  1. Cesaretti Giovanni, Dini Enrico, Kestelier Xavier, Colla Valentina et al. (2013-08)
    Building Components for an Outpost on the Lunar Soil by Means of a Novel 3D Printing Technology
  2. Chen Mingxu, Li Laibo, Wang Jiaao, Huang Yongbo et al. (2019-10)
    Rheological Parameters and Building Time of 3D Printing Sulphoaluminate-Cement-Paste Modified by Retarder and Diatomite
  3. Chen Mingxu, Liu Bo, Li Laibo, Cao Lidong et al. (2020-01)
    Rheological Parameters, Thixotropy and Creep of 3D Printed Calcium-Sulfoaluminate-Cement Composites Modified by Bentonite
  4. Chu Shaohua, Li Leo, Kwan Albert (2020-09)
    Development of Extrudable High-Strength Fiber-Reinforced Concrete Incorporating Nano-Calcium-Carbonate
  5. Guo Xiaolu, Yang Junyi, Xiong Guiyan (2020-09)
    Influence of Supplementary Cementitious Materials on Rheological Properties of 3D Printed Fly-Ash-Based Geopolymer
  6. Hambach Manuel, Volkmer Dirk (2017-02)
    Properties of 3D Printed Fiber-Reinforced Portland-Cement-Paste
  7. Ivaniuk Egor, Eichenauer Martin, Tošić Zlata, Müller Steffen et al. (2022-05)
    3D Printing and Assembling of Frame Modules Using Printable Strain-Hardening Cement-Based Composites
  8. Labonnote Nathalie, Rønnquist Anders, Manum Bendik, Rüther Petra (2016-09)
    Additive Construction:
    State of the Art, Challenges and Opportunities
  9. Liu Xiongfei, Li Qi, Li Jixiang (2022-04)
    Shrinkage and Mechanical Properties Optimization of Spray-Based 3D Printed Concrete by PVA-Fiber
  10. Liu Chao, Wang Xianggang, Chen Yuning, Zhang Chao et al. (2021-06)
    Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Stability, Rheological Properties, and Printability of 3D Printing Foam-Concrete
  11. Long Wujian, Lin Can, Tao Jie-Lin, Ye Taohua et al. (2021-02)
    Printability and Particle-Packing of 3D Printable Limestone-Calcined-Clay-Cement Composites
  12. Ma Guowei, Li Zhijian, Wang Li (2017-12)
    Printable Properties of Cementitious Material Containing Copper-Tailings for Extrusion-Based 3D Printing
  13. Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
    Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing
  14. Panda Biranchi, Ruan Shaoqin, Unluer Cise, Tan Ming (2018-11)
    Improving the 3D Printability of High-Volume Fly-Ash Mixtures via the Use of Nano-Attapulgite-Clay
  15. Panda Biranchi, Tan Ming (2018-11)
    Rheological Behavior of High-Volume Fly-Ash Mixtures Containing Micro-Silica for Digital Construction Application
  16. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-02)
    Effect of Polyethylene-Fiber Content on Workability and Mechanical-Anisotropic Properties of 3D Printed Ultra-High-Ductile Concrete
  17. Ye Junhong, Cui Can, Yu Jiangtao, Yu Kequan et al. (2021-01)
    Fresh and Anisotropic-Mechanical Properties of 3D Printable Ultra-High-Ductile Concrete with Crumb-Rubber
  18. Zhang Chao, Nerella Venkatesh, Krishna Anurag, Wang Shen et al. (2021-06)
    Mix-Design Concepts for 3D Printable Concrete:
    A Review
  19. Zhang Yu, Zhang Yunsheng, She Wei, Yang Lin et al. (2019-01)
    Rheological and Hardened Properties of the High-Thixotropy 3D Printing Concrete

0 Citations

BibTeX
@article{li_zhan_zhou_zhu.2023.PaHPoTDPGBoLRSfACoLI,
  author            = "Feng Li and Rongrong Zhang and Siqi Zhou and Xingyi Zhu",
  title             = "Printability and Hardening Performance of Three-Dimensionally-Printed Geopolymer Based on Lunar Regolith Simulant for Automated Construction of Lunar Infrastructure",
  doi               = "10.1007/s11709-023-0003-0",
  year              = "2023",
  journal           = "Frontiers of Structural and Civil Engineering",
}
Formatted Citation

F. Li, R. Zhang, S. Zhou and X. Zhu, “Printability and Hardening Performance of Three-Dimensionally-Printed Geopolymer Based on Lunar Regolith Simulant for Automated Construction of Lunar Infrastructure”, Frontiers of Structural and Civil Engineering, 2023, doi: 10.1007/s11709-023-0003-0.

Li, Feng, Rongrong Zhang, Siqi Zhou, and Xingyi Zhu. “Printability and Hardening Performance of Three-Dimensionally-Printed Geopolymer Based on Lunar Regolith Simulant for Automated Construction of Lunar Infrastructure”. Frontiers of Structural and Civil Engineering, 2023. https://doi.org/10.1007/s11709-023-0003-0.