Skip to content

#fume

Keywords by Co - Occurrence

  1. Si Wen, Khan Mehran, McNally Ciaran (2025-11)
    Rheological Optimization and Mechanical Performance Assessment of High-Volume GGBS-Silica Fume Mortars for 3D Printing
  2. Bradshaw James, Balasubramanian Swathi, Si Wen, Khan Mehran et al. (2025-10)
    Towards Greener 3D Printing:
    A Performance Evaluation of Silica Fume-Modified Low-Carbon Concrete
  3. Si Wen, Hopkins Ben, Khan Mehran, McNally Ciaran (2025-09)
    Towards Sustainable Mortar:
    Optimising Sika-Fiber Dosage in Ground Granulated Blast Furnace Slag and Silica Fume Blends for 3D Concrete Printing
  4. Thajeel Marwah, Kopecskó Katalin, Balázs György (2025-04)
    Enhancing Printability of 3D Printed Concrete by Using Metakaolin and Silica Fume
  5. Wang Chaofan, Li Bin, Chen Bing (2025-04)
    Enhancing Printability and Mechanical Performance of 3D Printed Magnesium Phosphate Cement Through Silica Fume Modification:
    Rheological, Microstructural, and Numerical Insights
  6. Kurniati Eka, Kim Heejeong (2025-04)
    Enhancing the Printability of 3D Printing Limestone Calcined Clay Cement Using Hydroxyethyl Cellulose Admixture and Silica Fume
  7. Nassrullah Ghaith, Ali Mohd, Rub Rashid, Cho Cung-Suk et al. (2025-03)
    Optimizing Cement-Based Material Formulation for 3D Printing:
    Integrating Carbon Nanotubes and Silica Fume
  8. Şahin Hatice, Mardani Ali, Beytekin Hatice (2024-02)
    Effect of Silica-Fume Utilization on Structural Build-Up, Mechanical and Dimensional Stability Performance of Fiber-Reinforced 3D Printable Concrete
  9. Lucen Hao, Long Li, Shipeng Zhang, Huanghua Zhang et al. (2023-12)
    The Synergistic Effect of Greenhouse Gas CO2 and Silica-Fume on the Properties of 3D Printed Mortar
  10. Bayat Hamid, Kashani Alireza (2023-09)
    Analysis of Rheological Properties and Printability of a 3D Printing Mortar Containing Silica-Fume, Hydrated Lime, and Blast-Furnace-Slag
  11. Salah Husam, Mutalib Azrul, Kaish Amrul, Syamsir Agusril et al. (2023-07)
    Development of Ultra-High-Performance Silica-Fume-Based Mortar Incorporating Graphene-Nano-Platelets for 3D Concrete Printing Application
  12. Liu Chao, Zhang Yamei, Banthia Nemkumar (2023-05)
    Unveiling Pore Formation and Its Influence on Micromechanical Property and Stress-Distribution of 3D Printed Foam-Concrete Modified with Hydroxypropyl-Methylcellulose and Silica-Fume
  13. Srinivas Dodda, Dey Dhrutiman, Panda Biranchi, Sitharam Thallak (2022-12)
    Printability, Thermal and Compressive Strength Properties of Cementitious Materials:
    A Comparative Study with Silica-Fume and Limestone
  14. Diwan Anushree, Patel Shiv, Pal Ankit, Dwivedi Ashutosh et al. (2022-10)
    Flow Characteristics of Cement Mortar with Varied Silica-Fume for Additive Construction
  15. Liu Chao, Chen Yuning, Xiong Yuanliang, Jia Lutao et al. (2022-06)
    Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Buildability of 3D Printing Foam-Concrete:
    From Water State and Flocculation Point of View
  16. Liu Chao, Wang Xianggang, Chen Yuning, Zhang Chao et al. (2021-06)
    Influence of Hydroxypropyl-Methylcellulose and Silica-Fume on Stability, Rheological Properties, and Printability of 3D Printing Foam-Concrete