Skip to content

Predication of Strength-Based Failure in Extrusion-Based 3D Concrete Printing (2019-09)

10.1007/978-3-030-22566-7_45

 Jayathilakage Roshan,  Rajeev Pathmanathan,  Sanjayan Jay
Contribution - Proceedings of the 2nd International RILEM Conference on Rheology and Processing of Construction Materials and the 9th International RILEM Symposium on Self-Compacting Concrete, pp. 391-399

Abstract

Extrusion-based concrete 3D printing is an emerging construction technique to build the desired structure layer by layer without using any type of formwork. Hence, the printable concrete requires to achieve adequate strength to support the self-weight and subsequent layers in short period of time. This paper aims to identify the strength-based failure limits of 3D printing concrete through experimental and numerical procedure. The 3D Printing experiments were carried out to obtain the height of failure (i.e., number of printed layers before failure). The important rheological parameters of 3D printable concrete mixes were estimated experimentally and used in a numerical simulation as well as in theoretical equations to compare the results. The strength-based failure criterion for 3D printed object was developed and validated numerically using FLAC 3D (i.e., Fast Lagrangian Analysis of Continua). The time-dependent material behaviour was considered in the numerical analysis and the failure mode and the failure heights were modelled and compared with the experimental values. It was found that the experimental results and the numerical simulation results are comparable and the numerical simulation can be used as a reliable tool to decide the rheological parameters of 3D printing concrete for preventing the strength based failure.

6 References

  1. Jayathilakage Roshan, Sanjayan Jay, Rajeev Pathmanathan (2019-01)
    Direct-Shear-Test for the Assessment of Rheological Parameters of Concrete for 3D Printing Applications
  2. Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
    Mix-Design and Fresh Properties for High-Performance Printing Concrete
  3. Lim Sungwoo, Buswell Richard, Le Thanh, Austin Simon et al. (2011-07)
    Developments in Construction-Scale Additive Manufacturing Processes
  4. Perrot Arnaud, Rangeard Damien, Pierre Alexandre (2015-02)
    Structural Build-Up of Cement-Based Materials Used for 3D Printing-Extrusion-Techniques
  5. Roussel Nicolas (2018-05)
    Rheological Requirements for Printable Concretes
  6. Wolfs Robert, Bos Freek, Salet Theo (2018-02)
    Early-Age Mechanical Behaviour of 3D Printed Concrete:
    Numerical Modelling and Experimental Testing

11 Citations

  1. Huseien Ghasan, Tan Shea, Saleh Ali, Lim Nor et al. (2024-08)
    Test-Procedures and Mechanical Properties of Three-Dimensional Printable Concrete Enclosing Different Mix-Proportions:
    A Review and Bibliometric Analysis
  2. Bayatkashkooli Samira, Amirsardari Anita, Rajeev Pathmanathan, Sanjayan Jay et al. (2024-05)
    Investigation of Axial Load Capacity of 3D Printed Concrete Wall
  3. Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2022-08)
    Rheometry for Concrete 3D Printing:
    A Review and an Experimental Comparison
  4. Marchment Taylor, Sanjayan Jay (2022-04)
    Lap Joint Reinforcement for 3D Concrete Printing
  5. Perrot Arnaud, Pierre Alexandre, Nerella Venkatesh, Wolfs Robert et al. (2021-07)
    From Analytical Methods to Numerical Simulations:
    A Process Engineering Toolbox for 3D Concrete Printing
  6. Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2021-05)
    Extrusion Rheometer for 3D Concrete Printing
  7. Kristombu Baduge Shanaka, Navaratnam Satheeskumar, Zidan Yousef, McCormack Tom et al. (2021-01)
    Improving Performance of Additive Manufactured Concrete:
    A Review on Material Mix-Design, Processing, Inter-Layer Bonding, and Reinforcing-Methods
  8. Sanjayan Jay, Jayathilakage Roshan, Rajeev Pathmanathan (2020-11)
    Vibration-Induced Active Rheology-Control for 3D Concrete Printing
  9. Jayathilakage Roshan, Sanjayan Jay, Rajeev Pathmanathan (2020-07)
    Characterizing Extrudability for 3D Concrete Printing Using Discrete Element Simulations
  10. Suntharalingam Thadshajini, Nagaratnam Brabha, Poologanathan Keerthan, Hackney Phil et al. (2020-07)
    Effect of Polypropylene-Fibers on the Mechanical Properties of Extrudable Cementitious Material
  11. Jayathilakage Roshan, Rajeev Pathmanathan, Sanjayan Jay (2020-01)
    Yield-Stress-Criteria to Assess the Buildability of 3D Concrete Printing

BibTeX
@inproceedings{jaya_raje_sanj.2019.PoSBFiEB3CP,
  author            = "Roshan I. Jayathilakage and Pathmanathan Rajeev and Jay Gnananandan Sanjayan",
  title             = "Predication of Strength-Based Failure in Extrusion-Based 3D Concrete Printing",
  doi               = "10.1007/978-3-030-22566-7_45",
  year              = "2019",
  volume            = "23",
  pages             = "391--399",
  booktitle         = "Proceedings of the 2nd International RILEM Conference on Rheology and Processing of Construction Materials and the 9th International RILEM Symposium on Self-Compacting Concrete",
  editor            = "Viktor Mechtcherine and Kamal H. Khayat and Egor Secrieru",
}
Formatted Citation

R. I. Jayathilakage, P. Rajeev and J. G. Sanjayan, “Predication of Strength-Based Failure in Extrusion-Based 3D Concrete Printing”, in Proceedings of the 2nd International RILEM Conference on Rheology and Processing of Construction Materials and the 9th International RILEM Symposium on Self-Compacting Concrete, 2019, vol. 23, pp. 391–399. doi: 10.1007/978-3-030-22566-7_45.

Jayathilakage, Roshan I., Pathmanathan Rajeev, and Jay Gnananandan Sanjayan. “Predication of Strength-Based Failure in Extrusion-Based 3D Concrete Printing”. In Proceedings of the 2nd International RILEM Conference on Rheology and Processing of Construction Materials and the 9th International RILEM Symposium on Self-Compacting Concrete, edited by Viktor Mechtcherine, Kamal H. Khayat, and Egor Secrieru, 23:391–99, 2019. https://doi.org/10.1007/978-3-030-22566-7_45.