Skip to content

Improving Homogeneity of 3D Printed Cementitious Material-Distribution for Radial Tool-Path (2023-03)

10.3390/fluids8030087

 Li Mingyang,  Liu Zhixin, Ho Jin,  Wong Teck
Journal Article - Fluids, Vol. 8, Iss. 3

Abstract

The 3D cementitious material printing method is an extrusion-based additive manufacturing strategy in which cementitious materials are extruded through a dynamic nozzle system to form filaments. Despite its ability to fabricate structures with high complexity and efficiency, the uneven material distribution during the extrusion and deposition process is often encountered when a radial toolpath is introduced. This limits the design freedom and printing parameters that can be utilized during radial toolpath printing. Here, we report a facile strategy to overcome the existing challenges of cementitious material non-homogeneity by rationally developing new nozzle geometries that passively compensate the differential deposition rate encountered in conventional rectangular nozzles. Using two-phase numerical study, we showed that our strategy has the potential of achieving a homogeneous mass distribution even when the nozzle travel speed is unfavorably high, while filament from a rectangular nozzle remains highly non-homogenous. The material distribution unevenness can be reduced from 1.35 to 1.23 and to 0.98 after adopting trapezoid and gaussian nozzles, indicating improvements of 34.3% and 94.2%, respectively. This work not only outlines the methodology for improving the quality of corner/curved features in 3DCMP, but also introduces a new strategy which can be adopted for other extrusion-based fabrication techniques with high material inertia.

10 References

  1. Bos Freek, Wolfs Robert, Ahmed Zeeshan, Salet Theo (2016-08)
    Additive Manufacturing of Concrete in Construction:
    Potentials and Challenges of 3D Concrete Printing
  2. Cao Xiangpeng, Yu Shiheng, Cui Hongzhi, Li Zongjin (2022-04)
    3D Printing Devices and Reinforcing Techniques for Extruded Cement-Based Materials:
    A Review
  3. Comminal Raphaël, Serdeczny Marcin, Pedersen David, Spangenberg Jon (2019-06)
    Motion-Planning and Numerical Simulation of Material-Deposition at Corners in Extrusion Additive Manufacturing
  4. Lao Wenxin, Li Mingyang, Wong Teck, Tan Ming et al. (2020-02)
    Improving Surface-Finish-Quality in Extrusion-Based 3D Concrete Printing Using Machine-Learning-Based Extrudate-Geometry-Control
  5. Liu Zhixin, Li Mingyang, Tay Yi, Weng Yiwei et al. (2020-04)
    Rotation-Nozzle and Numerical Simulation of Mass-Distribution at Corners in 3D Cementitious Material-Printing
  6. Liu Zhixin, Li Mingyang, Weng Yiwei, Qian Ye et al. (2020-03)
    Modelling- and Parameter-Optimization for Filament-Deformation in 3D Cementitious Material-Printing Using Support-Vector-Machine
  7. Ngo Tuan, Kashani Alireza, Imbalzano Gabriele, Nguyen Quynh et al. (2018-02)
    Additive Manufacturing (3D Printing):
    A Review of Materials, Methods, Applications and Challenges
  8. Panda Biranchi, Unluer Cise, Tan Ming (2019-08)
    Extrusion and Rheology Characterization of Geopolymer Nanocomposites Used in 3D Printing
  9. Paul Suvash, Zijl Gideon, Tan Ming, Gibson Ian (2018-05)
    A Review of 3D Concrete Printing Systems and Materials Properties:
    Current Status and Future Research Prospects
  10. Zareiyan Babak, Khoshnevis Behrokh (2017-08)
    Effects of Interlocking on Inter-Layer Adhesion and Strength of Structures in 3D Printing of Concrete

1 Citations

  1. Zhang Ziqi, Pan Tinghong, Guoa Rongxin, Lin Runsheng et al. (2025-04)
    Simulation and Analysis of Material Stacking and Migration Induced by Extrusion Behavior in 3D Printed Concrete

BibTeX
@article{li_liu_ho_wong.2023.IHo3PCMDfRTP,
  author            = "Mingyang Li and Zhixin Liu and Jin Yao Ho and Teck Neng Wong",
  title             = "Improving Homogeneity of 3D Printed Cementitious Material-Distribution for Radial Tool-Path",
  doi               = "10.3390/fluids8030087",
  year              = "2023",
  journal           = "Fluids",
  volume            = "8",
  number            = "3",
}
Formatted Citation

M. Li, Z. Liu, J. Y. Ho and T. N. Wong, “Improving Homogeneity of 3D Printed Cementitious Material-Distribution for Radial Tool-Path”, Fluids, vol. 8, no. 3, 2023, doi: 10.3390/fluids8030087.

Li, Mingyang, Zhixin Liu, Jin Yao Ho, and Teck Neng Wong. “Improving Homogeneity of 3D Printed Cementitious Material-Distribution for Radial Tool-Path”. Fluids 8, no. 3 (2023). https://doi.org/10.3390/fluids8030087.