Shrinkage and Cracking Properties of Cellulose-Fiber-Concrete Composites for 3D Printing by Leveraging Internal Curing (2022-07)¶
, Li Qiqi, Hu Yuanyuan, Cui Tianlong, Li Rong
Journal Article - 3D Printing and Additive Manufacturing
Abstract
Compared with conventional formwork casting materials, 3D printed concrete (3DPC) is characterized by large amounts of cementitious materials, a low aggregate–binder ratio, and a large water evaporation area, which make the printed materials and structures highly prone to plastic shrinkage and cracking. In this study, cellulose fibers were incorporated into concrete to improve its moisture distribution and increase its early-age strength. The effects of both dry and prewet cellulose fibers on properties of 3DPC were experimentally investigated. To ensure consistency in the amounts of dry fibers used, 0.5–2% dry cellulose fibers and 1–4% prewet cellulose fibers were adopted. The effects of the added cellulose fibers on printability, mechanical strength, shrinkage, and cracking performance of the 3DPC were experimentally studied. Particularly, a constraint method was developed to access the cracking behavior of 3DPC. Favorable shrinkage resistance was achieved, and the 120day shrinkage decreased by 17.9% and 23.3% by addition of 2% dry fibers and 4% prewet fibers, respectively. Cracking was eliminated with addition of 4% prewet fibers, without influencing the printability and mechanical properties.
¶
13 References
- Bai Gang, Wang Li, Ma Guowei, Sanjayan Jay et al. (2021-03)
3D Printing Eco-Friendly Concrete Containing Under-Utilised and Waste Solids as Aggregates - Ghourchian Sadegh, Butler Marko, Krüger Markus, Mechtcherine Viktor (2021-04)
Modelling the Development of Capillary Pressure in Freshly 3D Printed Concrete Elements - Han Yilong, Yang Zhihan, Ding Tao, Xiao Jianzhuang (2020-08)
Environmental and Economic Assessment on 3D Printed Buildings with Recycled Concrete - Jipa Mihail-Andrei, Dillenburger Benjamin (2022-04)
3D Printed Formwork for Concrete:
State of the Art, Opportunities, Challenges, and Applications - Ma Guowei, Li Zhijian, Wang Li, Wang Fang et al. (2019-01)
Mechanical Anisotropy of Aligned Fiber-Reinforced Composite for Extrusion-Based 3D Printing - Ma Guowei, Salman Nazar, Wang Li, Wang Fang (2020-02)
A Novel Additive Mortar Leveraging Internal Curing for Enhancing Inter-Layer Bonding of Cementitious Composite for 3D Printing - Moelich Gerrit, Kruger Jacques, Combrinck Riaan (2020-08)
Plastic Shrinkage Cracking in 3D Printed Concrete - Wang Li, Ma Hui, Li Zhijian, Ma Guowei et al. (2021-07)
Cementitious Composites Blending with High Belite-Sulfoaluminate and Medium-Heat Portland Cements for Large-Scale 3D Printing - Wang Li, Ma Guowei, Liu Tianhao, Buswell Richard et al. (2021-07)
Inter-Layer Reinforcement of 3D Printed Concrete by the In-Process Deposition of U-Nails - Wang Li, Tian Zehao, Ma Guowei, Zhang Mo (2020-02)
Inter-Layer Bonding Improvement of 3D Printed Concrete with Polymer-Modified Mortar:
Experiments and Molecular Dynamics Studies - Wang Li, Yang Yu, Yao Liang, Ma Guowei (2022-02)
Interfacial Bonding Properties of 3D Printed Permanent Formwork with the Post-Casted Concrete - Xiao Jianzhuang, Ji Guangchao, Zhang Yamei, Ma Guowei et al. (2021-06)
Large-Scale 3D Printing Concrete Technology:
Current Status and Future Opportunities - Xiao Jianzhuang, Liu Haoran, Ding Tao (2020-11)
Finite-Element-Analysis on the Anisotropic Behavior of 3D Printed Concrete under Compression and Flexure
7 Citations
- Li Shuai, Corelli Jaide, Tran Jonathan, Fan Linhua (2025-09)
3D Printable Cellulose Concrete:
A Review and Pathway to Future Research - Qi Pengfei, Wang Ziyuan, Yu Ruifang, Pei Qiang et al. (2025-05)
Optimization Design and Regression Model Analysis of Mechanical Properties of 3D Printed Concrete - Dias José, Brandão Filipe, Figueiredo Bruno, Cruz Paulo (2024-09)
The Potential of Natural Fiber-Reinforcement in 3D Printed Concrete:
A Review - Wei Yazhi, Zhang Hui (2024-09)
Influence of Temperature and Humidity on Mechanical Properties of Calcined-Oyster-Shell-Powder-Modified 3D Printed Concrete - Shi Yifan, Jia Lutao, Jia Zijian, Ma Lei et al. (2024-03)
Early-Age Inhomogeneous Deformation of 3D Printed Concrete:
Characteristics and Influences of Superplasticizer and Water-Binder Ratio - Riaz Raja, Usman Muhammad, Ali Ammar, Majid Usama et al. (2023-06)
Inclusive Characterization of 3D Printed Concrete in Additive Manufacturing:
A Detailed Review - Bai Gang, Wang Li, Wang Fang, Ma Guowei (2022-12)
Assessing Printing Synergism in a Dual 3D Printing System for Ultra-High-Performance Concrete In-Process Reinforced Cementitious Composite
BibTeX
@article{wang_li_hu_cui.2022.SaCPoCFCCf3PbLIC,
author = "Li Wang and Qiqi Li and Yuanyuan Hu and Tianlong Cui and Rong Li",
title = "Shrinkage and Cracking Properties of Cellulose-Fiber-Concrete Composites for 3D Printing by Leveraging Internal Curing",
doi = "10.1089/3dp.2021.0281",
year = "2022",
journal = "3D Printing and Additive Manufacturing",
}
Formatted Citation
L. Wang, Q. Li, Y. Hu, T. Cui and R. Li, “Shrinkage and Cracking Properties of Cellulose-Fiber-Concrete Composites for 3D Printing by Leveraging Internal Curing”, 3D Printing and Additive Manufacturing, 2022, doi: 10.1089/3dp.2021.0281.
Wang, Li, Qiqi Li, Yuanyuan Hu, Tianlong Cui, and Rong Li. “Shrinkage and Cracking Properties of Cellulose-Fiber-Concrete Composites for 3D Printing by Leveraging Internal Curing”. 3D Printing and Additive Manufacturing, 2022. https://doi.org/10.1089/3dp.2021.0281.