Investigating the Interaction of Limestone-Calcined-Clay and OPC-Based Systems with a Methylhydroxyethyl-Cellulose-Based Viscosity-Modifier Used for 3D Printable Concrete (2024-07)¶
, ,
Journal Article - Journal of Materials in Civil Engineering, Vol. 36, Iss. 10
Abstract
Cellulose-ether-based viscosity-modifying admixtures (VMAs), such as methyl hydroxyethyl cellulose (MHEC), are commonly used for improving the printability of 3D printed concrete. For ordinary portland cement (OPC)–based systems, it is established that MHEC prolongs the dormant period and reduces the rate of calcium silicate hydrate (C─ S─ H) precipitation while reducing the early and later age strength. However, such an investigation is absent for limestone calcined clay (LC2)–based systems. The LC2-based 3D printable mixes are reported to require a smaller amount of VMA for improving the extrudability and buildability. The study aims to understand the interaction of MHEC with the binder system containing OPC and LC2. MHEC increases the water retention capacity of the mix while absorbing water and forming leaflike structures at lower dosages and wool-ball-like structures at higher dosages. Moreover, for a 45% LC2 content in binder, the hydration kinetics is not affected by 0.03% dosage, but an alteration of phase composition of carboaluminates is observed. For higher dosages of 0.06%, the hydration kinetics as well as phase composition are affected. In contrast, the connected porosity and pore size distribution measured as an indication of microstructure, using mercury intrusion porosimetry, water porosity, and formation factor, remain unaffected by the addition of MHEC. The reduction in porosity due to the addition of MHEC may not be observed due to the deposition of the agglomerated MHECs as weak inclusions in the pores. The change in the replacement percentage of LC2 is observed to affect the hydration kinetics of OPC-MHEC systems. For 100% OPC, the MHEC increases the dormant time and reduces the rate of C─ S─ H precipitation. However, for higher LC2 content mixes, the dormant period and C─ S─ H precipitation rate are not influenced, but calcium aluminosulfate formation (second peak) is delayed due to a change in the dissolution mechanism. However, for all the replacement percentages of LC2, the compressive strength is reduced with the addition of MHEC.
¶
17 References
- Bhattacherjee Shantanu, Basavaraj Anusha, Rahul Attupurathu, Santhanam Manu et al. (2021-06)
Sustainable Materials for 3D Concrete Printing - Bhattacherjee Shantanu, Jain Smrati, Santhanam Manu (2022-11)
Criticality of Binder-Aggregate Interaction for Buildability of 3D Printed Concrete Containing Limestone-Calcined-Clay - Bhattacherjee Shantanu, Jain Smrati, Santhanam Manu (2022-06)
Criticality of Microstructural Evolution at an Early-Age on the Buildability of an Accelerated 3D Printable Concrete - Bhattacherjee Shantanu, Jain Smrati, Santhanam Manu (2023-03)
Developing 3D Printable and Buildable Limestone-Calcined-Clay-Based Cement Composites with Higher Aggregate Content - Bhattacherjee Shantanu, Santhanam Manu (2022-04)
Investigation on the Effect of Alkali-Free Aluminium Sulfate-Based Accelerator on the Fresh Properties of 3D Printable Concrete - Chen Yu, Çopuroğlu Oğuzhan, Rodríguez Claudia, Filho Fernando et al. (2021-02)
Characterization of Air-Void Systems in 3D Printed Cementitious Materials Using Optical Image Scanning and X-Ray Computed Tomography - Chen Yu, Figueiredo Stefan, Li Zhenming, Chang Ze et al. (2020-03)
Improving Printability of Limestone-Calcined-Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture - Chen Yu, Figueiredo Stefan, Yalçınkaya Çağlar, Çopuroğlu Oğuzhan et al. (2019-04)
The Effect of Viscosity-Modifying Admixture on the Extrudability of Limestone and Calcined-Clay-Based Cementitious Material for Extrusion-Based 3D Concrete Printing - Chen Yu, He Shan, Zhang Yu, Wan Zhi et al. (2021-08)
3D Printing of Calcined-Clay-Limestone-Based Cementitious Materials - Chen Yu, Li Zhenming, Figueiredo Stefan, Çopuroğlu Oğuzhan et al. (2019-04)
Limestone and Calcined-Clay-Based Sustainable Cementitious Materials for 3D Concrete Printing:
A Fundamental Study of Extrudability and Early-Age Strength Development - Le Thanh, Austin Simon, Lim Sungwoo, Buswell Richard et al. (2012-01)
Mix-Design and Fresh Properties for High-Performance Printing Concrete - Marchon Delphine, Kawashima Shiho, Bessaies-Bey Hela, Mantellato Sara et al. (2018-05)
Hydration- and Rheology-Control of Concrete for Digital Fabrication:
Potential Admixtures and Cement-Chemistry - Moeini Mohammad, Hosseinpoor Masoud, Yahia Ammar (2022-04)
3D Printing of Cement-Based Materials with Adapted Buildability - Mohan Manu, Rahul Attupurathu, Tittelboom Kim, Schutter Geert (2020-10)
Rheological and Pumping Behavior of 3D Printable Cementitious Materials with Varying Aggregate Content - Peng Yiming, Unluer Cise (2022-12)
Development of Alternative Cementitious Binders for 3D Printing Applications:
A Critical Review of Progress, Advantages and Challenges - Rahul Attupurathu, Santhanam Manu, Meena Hitesh, Ghani Zimam (2018-12)
3D Printable Concrete:
Mixture-Design and Test-Methods - Rahul Attupurathu, Sharma Abhishek, Santhanam Manu (2020-01)
A Desorptivity-Based Approach for the Assessment of Phase Separation During Extrusion of Cementitious Materials
BibTeX
@article{bhat_jain_sant.2024.ItIoLCCaOBSwaMCBVMUf3PC,
author = "Shantanu Bhattacherjee and Smrati Jain and Manu Santhanam",
title = "Investigating the Interaction of Limestone-Calcined-Clay and OPC-Based Systems with a Methylhydroxyethyl-Cellulose-Based Viscosity-Modifier Used for 3D Printable Concrete",
doi = "10.1061/jmcee7.mteng-17728",
year = "2024",
journal = "Journal of Materials in Civil Engineering",
volume = "36",
number = "10",
}
Formatted Citation
S. Bhattacherjee, S. Jain and M. Santhanam, “Investigating the Interaction of Limestone-Calcined-Clay and OPC-Based Systems with a Methylhydroxyethyl-Cellulose-Based Viscosity-Modifier Used for 3D Printable Concrete”, Journal of Materials in Civil Engineering, vol. 36, no. 10, 2024, doi: 10.1061/jmcee7.mteng-17728.
Bhattacherjee, Shantanu, Smrati Jain, and Manu Santhanam. “Investigating the Interaction of Limestone-Calcined-Clay and OPC-Based Systems with a Methylhydroxyethyl-Cellulose-Based Viscosity-Modifier Used for 3D Printable Concrete”. Journal of Materials in Civil Engineering 36, no. 10 (2024). https://doi.org/10.1061/jmcee7.mteng-17728.